XTDB项目中关于SQL查询语法的探讨与优化建议
在XTDB数据库项目中,开发者们最近针对SQL查询语法进行了一次有趣的讨论,主要围绕是否应该允许在查询中仅使用多个SELECT语句而不包含FROM子句这一特性展开。
背景分析
传统SQL语法要求查询必须包含FROM子句,即使不需要从任何表中获取数据。这种设计源于SQL最初作为关系型数据库查询语言的定位。然而,在现代数据库应用中,特别是像XTDB这样的新型数据库系统,开发者们开始思考是否应该放宽这一限制,以提供更灵活的表达方式。
当前实现与限制
在XTDB当前的SQL实现中,已经支持了"管道式"的多SELECT查询,但要求查询必须以FROM子句开头。这种设计既保留了SQL的基本结构,又提供了额外的灵活性。例如,用户可以编写如下查询:
FROM (VALUES ()) x
SELECT 1 AS a, 2 AS b
SELECT a + b AS c
这种语法允许开发者构建查询管道,每个SELECT语句都可以基于前一个SELECT的结果进行计算。
讨论焦点
有开发者提出,是否应该进一步简化语法,允许完全不使用FROM子句的多SELECT查询,例如:
SELECT 1 AS a, 2 AS b
SELECT a + b AS c
这种提议的主要出发点是提高开发者的便利性,特别是在快速测试和探索性查询时。然而,核心团队对此持谨慎态度,主要基于以下考虑:
- 语法歧义风险:如果允许这种语法,将难以区分标准SQL查询顺序和XTDB的管道式查询语法
- 认知一致性:大多数SQL用户将SELECT视为"返回"操作,在非命令式语言中通常不鼓励使用多个返回语句
- 实现复杂性:当前语法解析器的设计基于FROM优先的结构,修改可能带来不小的技术挑战
替代方案与最佳实践
对于希望简化查询的场景,XTDB团队推荐使用以下模式:
- 使用VALUES构造虚拟表:如上文示例所示,通过VALUES子句创建一个单行虚拟表作为起点
- 子查询模式:将多个计算步骤封装为子查询
SELECT 1 AS a, 2 AS b
FROM (SELECT a + b AS c) x
这些方法既保持了SQL的标准兼容性,又提供了足够的灵活性。
设计哲学思考
XTDB团队在语法设计上展现出明显的保守倾向,这反映了数据库系统开发中的一个重要原则:语法糖的增加必须谨慎权衡其带来的便利性与可能造成的混淆。特别是在查询语言这种基础组件上,保持清晰的设计边界往往比增加便利性更为重要。
这种设计哲学确保了XTDB的SQL实现既能够提供创新功能,又不会过度偏离开发者对SQL的普遍认知,降低了学习成本和潜在的错误风险。
未来展望
虽然目前团队决定保持现有语法设计,但他们也表示会持续关注用户反馈。如果确实有大量用户需求出现,可能会重新考虑这一限制。同时,团队也开放了通过文档说明现有变通方案的可能性,以帮助用户更好地利用现有功能。
这一讨论不仅体现了XTDB团队对用户体验的关注,也展示了开源项目如何通过社区互动来不断完善产品设计。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00