TiDB.AI PR端到端测试CI优化方案解析
2025-06-30 23:21:21作者:范靓好Udolf
在TiDB.AI项目的持续集成流程中,端到端测试(E2E)是确保代码质量的重要环节。本文将深入分析如何通过优化PR的E2E测试流程来提升开发效率。
背景与挑战
在传统的CI/CD流程中,每次提交PR都会触发完整的构建和测试流程,包括前端和后端代码的Docker镜像构建。这种方式虽然可靠,但在某些场景下存在效率问题:
- 当多个PR基于同一代码基础时,重复构建相同的Docker镜像造成资源浪费
- 开发者在调试特定模块时,可能需要频繁触发完整构建流程
- 并行测试时,构建阶段可能成为瓶颈
优化方案设计
针对上述问题,TiDB.AI项目引入了一种灵活的标签机制来优化E2E测试流程。核心思想是通过PR标签控制构建行为:
- 标签语义化:新增
e2e-frontend:<DOCKER_BUILD_ID>和e2e-backend:<DOCKER_BUILD_ID>标签 - 构建控制:当标签中指定了DOCKER_BUILD_ID时,CI会跳过对应模块的构建阶段
- 默认行为:未指定标签时,保持原有完整构建流程
技术实现细节
该优化方案在CI流程中实现了以下关键逻辑:
- 标签解析:CI系统会解析PR标签,提取模块名称和构建ID
- 构建决策:对于每个模块(前端/后端),检查是否有对应的标签
- 有标签:使用指定构建ID的镜像
- 无标签:执行常规构建流程
- 镜像引用:使用预构建的镜像时,会从镜像仓库拉取对应版本的Docker镜像
典型使用场景
-
前端专项测试:当PR仅修改后端代码时,可以指定使用已构建的前端镜像
- 添加标签:
e2e-frontend:branch-main - 效果:跳过前端构建,直接使用main分支的前端镜像
- 添加标签:
-
后端专项测试:当PR仅修改前端代码时同理
- 添加标签:
e2e-backend:stable-v1.0 - 效果:跳过后端构建,使用稳定版本的后端镜像
- 添加标签:
-
完整测试:不添加特殊标签时,保持原有的完整构建和测试流程
优势与价值
- 节省构建资源:避免重复构建未修改的模块
- 加速测试流程:跳过构建阶段可以显著减少CI执行时间
- 提高调试效率:开发者可以专注于特定模块的测试
- 灵活可控:通过简单的标签即可控制测试行为
最佳实践建议
- 对于依赖基础功能的PR,建议使用稳定版本的预构建镜像
- 涉及多模块修改时,建议执行完整构建流程
- 团队内部可以维护常用镜像的构建ID文档
- 定期清理旧的构建镜像以避免存储空间浪费
总结
TiDB.AI项目的这一CI优化方案通过引入灵活的标签机制,实现了构建流程的精细化控制。这种设计不仅提升了CI效率,也为开发者提供了更大的灵活性。类似的思路也可以应用于其他需要模块化构建和测试的项目中,特别是那些包含前后端分离架构的系统。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
137
169
React Native鸿蒙化仓库
JavaScript
234
309
暂无简介
Dart
598
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
681
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
仓颉编程语言测试用例。
Cangjie
36
680