TanStack Table 中复选框渲染性能优化实践
2025-05-07 12:11:20作者:伍希望
问题背景
在使用 TanStack Table(原 React Table)构建权限管理表格时,开发者遇到了复选框渲染延迟的问题。表格中每一行代表一个权限,每一列代表一个角色,单元格内使用复选框表示该角色是否拥有该权限。当用户点击复选框时,会出现明显的延迟才能看到状态变化。
原始实现分析
最初实现中,开发者采用了以下关键设计:
- 使用
useMemo
缓存列定义(columns),依赖项为角色列表和角色权限数据 - 在复选框的
onCheckedChange
回调中,先更新本地状态,再调用 API 更新后端 - 使用
defaultChecked
而非checked
来控制复选框状态
这种实现方式虽然遵循了 TanStack Table 的最佳实践(使用 useMemo 缓存列定义),但却导致了性能问题。每次点击复选框时,由于状态更新触发了列定义的重新计算,进而导致整个表格的重新渲染,造成了明显的延迟。
性能问题根源
经过深入分析,发现性能瓶颈主要来自以下几个方面:
- 状态更新导致的列重新计算:每次复选框状态变化都会触发
rolePermissions
状态更新,进而触发useMemo
重新计算列定义 - 不必要的本地状态管理:实际上权限数据来自父组件,本地状态只是作为中间层,增加了复杂性
- 列定义的复杂性:动态生成的列(每个角色对应一列)使得列定义计算成本较高
优化方案
最终采取的优化方案是:
- 移除不必要的本地状态:直接使用父组件传入的
rolePermissions
和permissions
,不再维护本地副本 - 简化数据流:复选框点击直接调用父组件传入的
onUpdateRolePermission
方法,不再经过本地状态中转 - 保留 useMemo 优化:继续使用
useMemo
缓存列定义,但依赖项减少,计算更高效
优化后的关键代码如下:
const handleCheckboxChange = async (
roleId: string,
permissionId: string,
currentChecked: boolean
) => {
try {
await onUpdateRolePermission(roleId, permissionId, !currentChecked);
} catch (e) {
console.error("error from change", e);
}
};
const columns = React.useMemo(() => {
return getColumns({ roles, handleCheckboxChange, rolePermissions });
}, [roles, rolePermissions]);
优化效果
经过上述优化后:
- 复选框响应变得即时,不再有可感知的延迟
- 代码更加简洁,减少了不必要的状态管理
- 仍然保持了 TanStack Table 的最佳实践
- 数据流更加清晰,便于维护
经验总结
通过这个案例,我们可以总结出以下 TanStack Table 使用经验:
- 谨慎管理状态:在表格组件中,应该尽量减少不必要的本地状态,特别是当数据来自父组件时
- 合理使用 useMemo:对于复杂的列定义,useMemo 是必要的,但要确保依赖项尽可能简单
- 直接操作数据源:当数据来自外部时,优先考虑直接操作外部数据源,而不是通过本地状态中转
- 性能监控:对于交互复杂的表格,应该密切关注用户操作的响应速度,及时优化
这个案例展示了如何在使用 TanStack Table 构建复杂交互表格时,平衡功能实现与性能优化的关系,为类似场景的开发提供了有价值的参考。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
465

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
132
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
876
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
610
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4