AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.7版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架和必要的依赖库,让开发者能够快速部署和运行深度学习工作负载。这些容器镜像经过AWS的优化和测试,可以直接在EC2等云服务上使用,大幅简化了深度学习环境的搭建过程。
近日,AWS DLC项目发布了针对ARM64架构的PyTorch推理镜像v1.7版本,主要包含两个重要镜像更新:
CPU版本镜像特性
基于Ubuntu 22.04操作系统,该镜像预装了PyTorch 2.5.1 CPU版本,并配套Python 3.11环境。镜像中集成了PyTorch生态的关键组件,包括:
- 核心框架:torch 2.5.1+cpu
- 计算机视觉库:torchvision 0.20.1+cpu
- 音频处理库:torchaudio 2.5.1+cpu
- 模型服务工具:torchserve 0.12.0和torch-model-archiver 0.12.0
此外,镜像还包含了常用的数据科学工具链,如NumPy 2.1.3、SciPy 1.14.1、Pandas 2.2.3等,以及OpenCV 4.10.0用于计算机视觉任务。AWS CLI工具也预装在镜像中,方便用户与AWS服务交互。
GPU版本镜像特性
GPU版本镜像同样基于Ubuntu 22.04,但针对NVIDIA CUDA 12.4进行了优化,包含:
- PyTorch 2.5.1+cu124
- 对应的torchvision 0.20.1+cu124
- torchaudio 2.5.1+cu124
GPU版本额外预装了CUDA 12.4相关的库文件,包括cuBLAS 12-4和cuDNN 9(针对CUDA 12优化版),确保能够充分利用NVIDIA GPU的加速能力。
技术细节与优化
这两个镜像都经过了AWS的专门优化,特别是在ARM64架构上:
- 编译器优化:使用GCC 11工具链构建,包含libgcc-11-dev和libstdc++-11-dev等开发库
- 系统依赖:基于Ubuntu 22.04 LTS,提供长期支持
- 开发工具:预装了Emacs等开发环境工具
- 性能优化:针对EC2实例类型进行了特定优化
使用场景
这些ARM64架构的PyTorch推理镜像特别适合以下场景:
- 在AWS Graviton处理器实例上部署PyTorch推理服务
- 构建高效的机器学习推理流水线
- 开发跨架构的机器学习应用
- 需要平衡性能和成本的AI服务部署
总结
AWS Deep Learning Containers的这次更新为ARM64架构上的PyTorch推理工作负载提供了官方支持,开发者现在可以更方便地在Graviton实例上部署PyTorch模型。这些预构建的容器镜像不仅节省了环境配置时间,还经过了AWS的性能优化,是生产环境部署的理想选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00