TorchChat项目中的量化性能问题分析与解决
2025-06-20 18:11:57作者:廉皓灿Ida
在TorchChat项目中,开发者们发现了一个影响用户体验的重要性能问题。当使用默认的桌面配置文件desktop.json进行模型量化时,无论是使用eager模式、编译模式还是AOTI模式,推理速度都显著下降,导致生成token的速度变得异常缓慢。
问题背景
TorchChat是一个基于PyTorch的聊天模型框架,支持多种运行模式。项目团队为了提高模型在桌面设备上的运行效率,添加了一个默认的量化配置文件desktop.json。然而,实际测试表明,这个配置文件的性能表现不尽如人意。
性能表现
测试环境为MacBook Pro M1设备,Python 3.10.0版本。测试结果显示:
- Eager模式:平均生成速度仅为0.67 tokens/秒
- Eager+Compile模式:性能不升反降,降至0.60 tokens/秒
- AOTI模式:首字节响应时间过长,无法获得有效性能数据
这样的性能表现显然无法满足实际应用需求,特别是在交互式聊天场景中。
问题分析
经过技术团队分析,这个问题主要源于以下几个方面:
- 量化配置与硬件不匹配:当前的量化配置可能没有针对M1芯片进行优化
- PyTorch版本限制:现有PyTorch版本缺少对MPS(Metal Performance Shaders)内核的支持
- 编译优化不足:编译模式未能有效提升性能,表明编译过程可能存在优化机会
解决方案
项目团队采取了临时解决方案:
- 移除量化配置:暂时取消默认的量化设置,以避免性能下降
- 计划升级PyTorch:准备将PyTorch版本升级到支持MPS内核的版本
技术展望
长期来看,项目团队计划:
- 优化量化配置:重新设计针对不同硬件平台的量化参数
- 完善硬件加速:充分利用M1芯片的Metal加速能力
- 增强编译优化:改进编译流程,确保能带来预期的性能提升
这个问题反映了深度学习模型在边缘设备部署时的常见挑战,需要在模型压缩、硬件适配和运行时优化等多个维度进行综合考虑。TorchChat团队正在积极解决这些问题,以提供更好的用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19