EasyR1项目中的显存溢出问题分析与解决方案
2025-07-04 02:06:33作者:平淮齐Percy
问题背景
在EasyR1项目运行过程中,用户遇到了一个典型的显存溢出问题。该问题发生在使用Qwen2.5-VL-7B模型进行训练时,配置参数为max_prompt_length=3840和max_response_length=2048,硬件环境为8张80GB显存的GPU。
错误现象
系统在执行actor_rollout_ref_generate_sequences函数时抛出CUDA out of memory错误。具体表现为:
- 尝试分配13.30GB显存
- GPU0总容量79.35GB,当前空闲12.94GB
- 进程已使用66.35GB显存
- PyTorch已分配62.95GB显存
错误分析
从堆栈跟踪可以看出,错误发生在分布式训练的数据预处理阶段。具体是在torch.distributed.all_gather_object调用时,系统尝试创建一个大张量来收集所有进程的数据时发生的显存不足。
值得注意的是,这个问题只在训练过程的step1阶段出现,而step0阶段可以正常运行。这表明可能存在以下情况:
- step0阶段分配的资源未被及时释放
- step1阶段的数据处理需求显著增加
- 视频训练方式的自定义修改可能影响了显存管理
解决方案
经过验证,最直接的解决方案是减小batch_size参数。这可以降低单次处理的数据量,从而减少显存需求。其他可能的优化方向包括:
-
显存管理优化:
- 设置环境变量PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
- 检查并优化step0到step1过渡时的显存释放逻辑
-
数据处理优化:
- 实现更高效的数据分片策略
- 优化预处理管道的显存占用
-
模型配置调整:
- 适当减小max_prompt_length或max_response_length
- 调整模型并行度参数
最佳实践建议
对于大规模模型训练,特别是处理长序列数据时,建议:
- 从小batch_size开始,逐步增加以找到最优配置
- 实现显存监控机制,及时发现潜在问题
- 定期检查中间结果的显存占用情况
- 考虑使用梯度累积等技术来平衡显存使用和训练效率
通过系统性的显存管理和优化,可以有效避免此类问题的发生,确保训练过程的稳定性。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133