EasyR1项目中的显存溢出问题分析与解决方案
2025-07-04 03:01:46作者:平淮齐Percy
问题背景
在EasyR1项目运行过程中,用户遇到了一个典型的显存溢出问题。该问题发生在使用Qwen2.5-VL-7B模型进行训练时,配置参数为max_prompt_length=3840和max_response_length=2048,硬件环境为8张80GB显存的GPU。
错误现象
系统在执行actor_rollout_ref_generate_sequences函数时抛出CUDA out of memory错误。具体表现为:
- 尝试分配13.30GB显存
- GPU0总容量79.35GB,当前空闲12.94GB
- 进程已使用66.35GB显存
- PyTorch已分配62.95GB显存
错误分析
从堆栈跟踪可以看出,错误发生在分布式训练的数据预处理阶段。具体是在torch.distributed.all_gather_object调用时,系统尝试创建一个大张量来收集所有进程的数据时发生的显存不足。
值得注意的是,这个问题只在训练过程的step1阶段出现,而step0阶段可以正常运行。这表明可能存在以下情况:
- step0阶段分配的资源未被及时释放
- step1阶段的数据处理需求显著增加
- 视频训练方式的自定义修改可能影响了显存管理
解决方案
经过验证,最直接的解决方案是减小batch_size参数。这可以降低单次处理的数据量,从而减少显存需求。其他可能的优化方向包括:
-
显存管理优化:
- 设置环境变量PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
- 检查并优化step0到step1过渡时的显存释放逻辑
-
数据处理优化:
- 实现更高效的数据分片策略
- 优化预处理管道的显存占用
-
模型配置调整:
- 适当减小max_prompt_length或max_response_length
- 调整模型并行度参数
最佳实践建议
对于大规模模型训练,特别是处理长序列数据时,建议:
- 从小batch_size开始,逐步增加以找到最优配置
- 实现显存监控机制,及时发现潜在问题
- 定期检查中间结果的显存占用情况
- 考虑使用梯度累积等技术来平衡显存使用和训练效率
通过系统性的显存管理和优化,可以有效避免此类问题的发生,确保训练过程的稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
630
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210