MergeKit中处理Yi-34B模型合并时的Tokenizer问题解析
2025-06-06 14:10:11作者:宣聪麟
在模型合并过程中,Tokenizer的兼容性问题是一个常见但容易被忽视的技术难点。本文将以Yi-34B模型的合并为例,深入分析Tokenizer问题的成因和解决方案。
问题现象
当使用MergeKit合并基于Yi-34B架构的模型时,用户可能会遇到以下典型症状:
- 模型合并过程看似成功完成,没有报错
- 但后续无法将合并后的模型转换为GGUF格式
- 转换过程中出现"token ids超出范围"的错误提示
- 错误信息显示存在编号为64000和64001的token,而模型的最大token ID应为63999
问题根源
这种现象的根本原因在于模型合并过程中tokenizer的特殊处理机制。Yi系列模型使用特殊的tokenizer配置,在合并时容易出现以下情况:
- Token ID溢出:当合并不同来源的模型时,tokenizer的词汇表可能发生冲突,导致token ID超出预设范围
- 配置不完整:合并后的tokenizer.json文件可能丢失关键配置信息
- 特殊token处理不当:Yi模型包含大量"unused"占位token,这些token在合并时需要特殊处理
解决方案
经过实践验证,以下方法可以有效解决该问题:
-
启用embed_slerp参数: 在merge配置中添加
embed_slerp=true参数,这能确保token embedding的平滑过渡 -
正确设置tokenizer_source: 确保配置中的
tokenizer_source设置为'base',以继承基础模型的tokenizer配置 -
配置示例:
base_model: TeeZee/Kyllene-34B-v1.1
chat_template: auto
dtype: float16
merge_method: ties
models:
- model: TeeZee/Kyllene-34B-v1.1
parameters:
density: 0.5
weight: 0.5
- model: Doctor-Shotgun/Nous-Capybara-limarpv3-34B
parameters:
density: 0.5
weight: 0.5
parameters:
int8_mask: true
normalize: false
embed_slerp: true # 关键修复参数
tokenizer_source: base
进阶建议
-
关于unused token: 合并后模型中出现的"<|unusedXXX|>"标记是Yi模型的特性,通常不会影响生成质量。这些是预留的token位置,可用于后续微调。
-
量化注意事项: 在解决tokenizer问题后,建议使用最新版的量化工具进行GGUF转换,确保兼容性。
-
版本兼容性: 确保使用的MergeKit版本已包含相关修复(如#430号合并请求中的修复)。
通过以上方法,开发者可以顺利完成Yi-34B系列模型的合并与量化工作,为后续的推理和应用打下坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
287
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
226
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
439
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19