Label Studio中旋转边界框转YOLO格式的正确处理方法
在计算机视觉标注任务中,旋转边界框(Rotated Bounding Box)是一种比普通矩形框更精确的标注方式,特别适用于处理倾斜或旋转的目标物体。Label Studio作为一款流行的数据标注工具,支持旋转边界框的标注和导出,但在转换为YOLO格式时需要注意一些技术细节。
旋转边界框与YOLO格式的差异
旋转边界框通常包含五个参数:中心点坐标(x,y)、宽度(w)、高度(h)和旋转角度(θ)。而标准YOLO格式仅支持普通矩形框,使用四个参数:中心点坐标(x,y)、宽度(w)和高度(h),不包含旋转信息。
Label Studio中的导出选项
Label Studio从1.16版本开始提供了专门的YOLO OBB(YOLO Oriented Bounding Box)导出格式,这是处理旋转边界框的正确方式。YOLO OBB格式扩展了标准YOLO格式,增加了旋转角度的支持,可以完整保留旋转边界框的所有信息。
使用YOLO OBB格式的步骤
-
确认软件版本:确保使用Label Studio 1.16或更高版本,以及最新版的Label Studio SDK和转换工具。
-
标注数据:在Label Studio中使用旋转矩形工具进行标注,正确设置旋转角度。
-
导出数据:在Label Studio界面中选择"导出"功能,然后选择"YOLO OBB"格式进行导出。
-
模型训练:使用支持OBB的YOLO实现(如Ultralytics YOLO的最新版本)进行模型训练。
技术实现原理
当从Label Studio导出YOLO OBB格式时,系统会自动将旋转边界框的五个参数转换为YOLO OBB兼容的格式。转换过程中会保持原始几何信息不变,包括:
- 中心点坐标归一化到[0,1]范围
- 宽度和高度相对于图像尺寸的比例
- 旋转角度(通常以弧度表示)
常见问题解决方案
如果遇到旋转信息丢失的情况,可以检查以下方面:
- 确认使用了正确的导出格式(YOLO OBB而非标准YOLO)
- 验证使用的YOLO实现是否支持旋转边界框
- 检查标注时是否正确设置了旋转角度
通过正确使用YOLO OBB格式,可以充分利用旋转边界框提供的精确几何信息,提高模型对旋转目标的检测能力,特别适用于航拍图像、文档分析等包含大量倾斜目标的场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00