OpenXLA IREE中多输入矩阵乘法的泛化设计
背景与需求
在OpenXLA IREE编译器项目中,矩阵乘法运算(MMA)是GPU代码生成的核心操作之一。随着深度学习模型复杂度的提升,出现了对带缩放因子的矩阵乘法运算的需求,即形如acc := acc + (lhs * broadcast(scale)) x (rhs * broadcast(scale))
的运算模式。
现有的iree_gpu.multi_mma
操作在设计上存在局限性,它只能处理固定的左右输入操作数(lhs和rhs),无法灵活支持多个输入操作数的情况。这在实现带缩放因子的矩阵乘法时显得不够灵活。
技术方案设计
为了解决这一问题,IREE社区提出了对iree_gpu.multi_mma
操作进行泛化的设计方案:
-
输入操作数泛化:将固定的
lhs
和rhs
输入改为可变数量的inputs
参数,使其能够接受任意数量的输入张量。 -
置换规则扩展:原有的
lhs_perm
和rhs_perm
置换规则将扩展为input_perms
,这是一个数组的数组结构,可以分别为每个输入操作数指定独立的置换规则。 -
操作重定位:考虑到该操作的通用性,计划将其从
iree_gpu
命名空间迁移到更合适的模块中,如iree_codegen
或LinalgExt
。
实现考量
在实现这一泛化设计时,有几个关键的技术考量点:
-
操作描述符接口:原有的
mma_attr
属性需要重命名为更具通用性的名称,如operator_descriptor
,以反映其更广泛的用途。 -
代码生成兼容性:新的接口设计需要保持与现有代码生成管道的兼容性,确保不影响已有的优化流程。
-
性能优化:多输入支持不应显著增加运行时开销,需要在设计时就考虑如何高效处理多个输入操作数。
技术影响
这一改进将为IREE带来以下优势:
-
表达力增强:能够支持更复杂的矩阵运算模式,特别是那些需要额外缩放因子的运算。
-
代码复用:统一的接口可以减少特殊情况下所需的定制化操作数量。
-
未来扩展性:为将来可能出现的其他多输入矩阵运算模式提供了基础支持。
总结
OpenXLA IREE中对多输入矩阵乘法操作的泛化设计,体现了编译器中间表示(IR)不断演进以适应新计算需求的过程。这一改进不仅解决了当前带缩放因子矩阵乘法的实现问题,还为未来更复杂的运算模式奠定了基础,展现了IREE项目在深度学习编译器领域的持续创新。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









