OpenXLA IREE中多输入矩阵乘法的泛化设计
背景与需求
在OpenXLA IREE编译器项目中,矩阵乘法运算(MMA)是GPU代码生成的核心操作之一。随着深度学习模型复杂度的提升,出现了对带缩放因子的矩阵乘法运算的需求,即形如acc := acc + (lhs * broadcast(scale)) x (rhs * broadcast(scale))的运算模式。
现有的iree_gpu.multi_mma操作在设计上存在局限性,它只能处理固定的左右输入操作数(lhs和rhs),无法灵活支持多个输入操作数的情况。这在实现带缩放因子的矩阵乘法时显得不够灵活。
技术方案设计
为了解决这一问题,IREE社区提出了对iree_gpu.multi_mma操作进行泛化的设计方案:
-
输入操作数泛化:将固定的
lhs和rhs输入改为可变数量的inputs参数,使其能够接受任意数量的输入张量。 -
置换规则扩展:原有的
lhs_perm和rhs_perm置换规则将扩展为input_perms,这是一个数组的数组结构,可以分别为每个输入操作数指定独立的置换规则。 -
操作重定位:考虑到该操作的通用性,计划将其从
iree_gpu命名空间迁移到更合适的模块中,如iree_codegen或LinalgExt。
实现考量
在实现这一泛化设计时,有几个关键的技术考量点:
-
操作描述符接口:原有的
mma_attr属性需要重命名为更具通用性的名称,如operator_descriptor,以反映其更广泛的用途。 -
代码生成兼容性:新的接口设计需要保持与现有代码生成管道的兼容性,确保不影响已有的优化流程。
-
性能优化:多输入支持不应显著增加运行时开销,需要在设计时就考虑如何高效处理多个输入操作数。
技术影响
这一改进将为IREE带来以下优势:
-
表达力增强:能够支持更复杂的矩阵运算模式,特别是那些需要额外缩放因子的运算。
-
代码复用:统一的接口可以减少特殊情况下所需的定制化操作数量。
-
未来扩展性:为将来可能出现的其他多输入矩阵运算模式提供了基础支持。
总结
OpenXLA IREE中对多输入矩阵乘法操作的泛化设计,体现了编译器中间表示(IR)不断演进以适应新计算需求的过程。这一改进不仅解决了当前带缩放因子矩阵乘法的实现问题,还为未来更复杂的运算模式奠定了基础,展现了IREE项目在深度学习编译器领域的持续创新。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00