Microsoft Olive项目中动态形状支持的技术解析
动态形状在ONNX导出中的重要性
在深度学习模型部署过程中,动态形状支持是一个关键特性。传统的静态形状模型要求输入张量的维度在模型编译时就必须完全确定,这在处理可变长度输入(如自然语言处理中的不同长度句子)时会带来诸多不便。Microsoft Olive项目近期针对这一问题进行了重要改进,特别是在使用dynamo=True参数进行ONNX模型导出时。
技术实现细节
Olive项目的最新更新实现了动态形状的自动传递机制。当用户设置dynamo=True进行模型导出时,系统会自动处理输入输出配置(IO config)中的动态形状参数。这项改进的核心在于:
-
动态形状的编码方式:用户现在可以通过元组(tuple)的形式在IO配置中指定动态维度,这为模型提供了更灵活的输入输出处理能力。
-
嵌套动态形状支持:特别针对Transformer类模型中的键值缓存(kv cache)输入,系统能够正确地从展开的动态轴生成嵌套的动态形状结构。这对于处理自回归生成任务中的可变序列长度至关重要。
-
配置兼容性:改进后的系统能够正确处理HuggingFace模型IO配置中的动态轴参数,确保不同来源的模型配置都能被准确解析。
实际应用价值
这项技术改进为模型部署带来了显著优势:
-
更灵活的模型部署:支持动态批处理(dynamic batching)和可变序列长度,提高了模型在生产环境中的实用性。
-
性能优化:通过动态形状支持,可以避免为不同输入尺寸单独编译模型,减少资源浪费。
-
简化配置:用户友好的配置方式降低了使用门槛,开发者可以更直观地表达模型的动态维度需求。
技术背景与挑战
实现动态形状支持面临几个技术挑战:
-
形状推断:ONNX运行时需要能够正确推断不同动态维度之间的关系,确保计算图的正确性。
-
内存管理:动态形状要求运行时系统能够高效处理可变大小的张量内存分配。
-
跨框架兼容:确保PyTorch动态形状能够正确映射到ONNX表示,特别是在处理复杂模型结构时。
Olive项目通过改进导出逻辑和配置解析机制,成功解决了这些挑战,为开发者提供了更强大的模型导出工具。
未来展望
随着动态计算需求的增长,Olive项目可能会进一步扩展动态形状支持的范围,包括:
- 更复杂的动态模式支持
- 动态形状的性能优化
- 与更多推理后端的深度集成
这项改进标志着Olive项目在模型优化和部署便捷性方面又迈出了重要一步,为开发者提供了更强大的工具链支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00