MLRun v1.10.0-rc5 版本发布:模型监控增强与Dask集群优化
MLRun 是一个开源的机器学习运维平台,它提供了端到端的机器学习生命周期管理能力。从数据准备、特征工程、模型训练到模型部署和监控,MLRun 都能提供高效的支持。本次发布的 v1.10.0-rc5 版本是一个候选发布版,主要聚焦于模型监控功能的增强和分布式计算能力的优化。
核心功能更新
模型监控功能增强
本次版本在模型监控方面做了重要改进,支持在评估过程中直接传递数据项。这一改进使得模型监控更加灵活,用户可以直接将需要监控的数据项传递给评估函数,而不需要先进行额外的数据预处理步骤。这对于实时监控场景特别有价值,能够显著减少监控延迟。
Dask集群启动优化
分布式计算是MLRun的重要能力之一,本次版本对Dask集群的启动过程进行了优化。新增了集群启动超时时的异常抛出机制,这有助于开发者更快地发现和诊断集群启动问题,避免因集群启动失败而导致的长时间等待。这一改进对于大规模分布式训练任务尤为重要。
开发体验改进
教程文档更新
针对AWS相关教程,本次版本添加了一个针对错误URL键名的工作区解决方案。这体现了MLRun团队对用户体验的持续关注,通过文档的完善帮助开发者更快地解决实际问题。
依赖管理自动化
版本升级了锁文件,这是MLRun持续集成流程的一部分,确保了依赖管理的自动化和一致性。这种自动化机制对于维护大型项目的稳定性至关重要。
代码管理优化
在代码管理方面,本次版本将GNU Global生成的标签文件添加到了.gitignore中。这是一个细节改进,避免了开发环境中生成的临时文件被误提交到代码库中,体现了项目对代码仓库整洁性的重视。
向后兼容性调整
作为版本演进的一部分,本次发布移除了list_schedules函数中的labels参数。这种调整通常是为了简化API或改进设计,开发者需要注意检查自己的代码是否受到影响。
总结
MLRun v1.10.0-rc5版本虽然在功能上没有重大突破,但在细节优化和稳定性提升方面做了大量工作。特别是模型监控功能的增强和Dask集群的优化,进一步巩固了MLRun作为生产级MLOps平台的地位。这些改进虽然看似微小,但对于实际生产环境中的稳定性和开发效率提升有着重要意义。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00