CARLA仿真平台在Ubuntu 22.04上的编译问题分析与解决方案
2025-05-18 07:31:32作者:田桥桑Industrious
问题背景
CARLA是一款开源的自动驾驶仿真平台,基于Unreal Engine构建。在Ubuntu 22.04系统上安装CARLA 0.9.15版本时,用户遇到了PythonAPI编译失败的问题。错误主要出现在boost_numpy库的构建过程中,表现为无法生成libboost_numpy310.so动态链接库文件。
错误现象分析
在编译过程中,系统报告了以下关键错误信息:
...skipped <pbin.v2/libs/python/build/clang-linux-10.0/release/python-3.10/threading-multi/visibility-hidden>libboost_numpy310.so.1.80.0 for lack of <pbin.v2/libs/python/build/clang-linux-10.0/release/python-3.10/threading-multi/visibility-hidden>numpy/dtype.o...
这表明构建系统无法找到numpy/dtype.o文件,导致boost_numpy库无法正确编译。该问题通常与Python版本不兼容有关。
根本原因
CARLA 0.9.15版本官方推荐使用Python 3.8环境,而Ubuntu 22.04默认安装的是Python 3.10。这种版本差异会导致:
- 构建系统尝试为Python 3.10编译boost_numpy库
- 相关依赖项和接口可能不兼容
- 最终导致编译失败
解决方案
方法一:指定Python版本编译
在构建PythonAPI时,可以显式指定使用Python 3.8:
make PythonAPI ARGS="--python-version 3.8"
方法二:修改构建配置文件
永久性地将CARLA构建系统配置为使用Python 3.8:
- 编辑CARLA源码目录下的构建工具配置文件
- 找到
PY_VERSION_LIST=3这一行 - 修改为
PY_VERSION_LIST=3.8
需要修改的文件可能包括:
Util/BuildTools/BuildPythonAPI.shUtil/BuildTools/Setup.shUtil/BuildTools/Import.sh
方法三:使用推荐的操作系统版本
考虑到兼容性问题,建议在Ubuntu 20.04系统上安装CARLA 0.9.15,这是官方推荐的组合。
后续可能遇到的问题及解决
在解决Python版本问题后,用户可能会遇到编译器配置问题:
CMake Error at /usr/share/cmake-3.22/Modules/CMakeDetermineCCompiler.cmake:49 (message):
Could not find compiler set in environment variable CC:
这通常是由于以下原因导致的:
- UE4_ROOT环境变量未正确设置
- 编译器路径配置错误
解决方案:
- 确认并正确设置UE4_ROOT环境变量
- 检查编译器路径是否有效
- 确保系统安装了正确版本的clang编译器
最佳实践建议
- 环境隔离:考虑使用Python虚拟环境或conda环境管理不同版本的Python
- 版本匹配:严格按照CARLA版本说明选择操作系统和依赖版本
- 日志分析:遇到问题时详细阅读构建日志,定位具体错误
- 逐步验证:先确保基础环境配置正确,再尝试完整构建
总结
CARLA仿真平台在非官方推荐环境下的安装可能会遇到各种兼容性问题。通过合理配置Python版本、正确设置环境变量以及选择匹配的系统环境,可以成功解决大多数构建问题。对于自动驾驶研究和开发,建议使用官方推荐的Ubuntu 20.04系统以获得最佳兼容性和稳定性。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660