在Vercel AI SDK中使用兼容模式对接第三方大模型的经验分享
在使用Vercel AI SDK开发聊天应用时,很多开发者会遇到需要对接非OpenAI官方模型的情况。本文将分享一个实际案例,介绍如何正确使用@ai-sdk/openai-compatible模块来对接阿里云通义千问模型,并解决自定义参数传递的问题。
问题背景
当开发者尝试使用@ai-sdk/openai模块的兼容模式对接阿里云DashScope平台的通义千问模型时,发现无法通过providerOptions传递模型特定的参数。例如,想设置enable_thinking参数来控制模型是否显示思考过程,但该参数在最终请求中并未生效。
错误做法分析
开发者最初尝试了以下方式:
import { createOpenAI } from '@ai-sdk/openai';
const qwen = createOpenAI({
name: 'qwen',
apiKey: 'xxxxx',
baseURL: 'https://dashscope.aliyuncs.com/compatible-mode/v1',
compatibility: 'compatible',
});
const stream = streamText({
model: qwen('qwen3-235b-a22b'),
prompt: 'who are you?',
providerOptions: {
qwen: {
enable_thinking: false,
},
},
});
这种方法的问题在于,@ai-sdk/openai模块主要是为OpenAI官方API设计的,虽然提供了兼容模式,但对于第三方模型的特有参数支持不够完善。
正确解决方案
Vercel AI SDK团队专门提供了@ai-sdk/openai-compatible模块来处理这类需求。该模块专为兼容OpenAI API的第三方服务设计,能够更好地支持各种自定义参数。
正确做法如下:
import { createOpenAICompatible } from '@ai-sdk/openai-compatible';
const qwen = createOpenAICompatible({
apiKey: 'xxxxx',
baseURL: 'https://dashscope.aliyuncs.com/compatible-mode/v1',
});
const stream = streamText({
model: qwen('qwen3-235b-a22b'),
prompt: 'who are you?',
providerOptions: {
qwen: {
enable_thinking: false,
},
},
});
技术要点解析
-
模块选择:
@ai-sdk/openai-compatible是专门为兼容OpenAI API的第三方服务设计的,相比@ai-sdk/openai的兼容模式,它提供了更灵活的参数传递机制。 -
参数传递:通过
providerOptions可以传递服务商特定的参数,这些参数会直接合并到最终的API请求中。 -
兼容性处理:该模块会自动处理与OpenAI API的兼容性问题,开发者无需关心底层实现细节。
实际应用建议
-
对于完全兼容OpenAI API的服务,优先使用
@ai-sdk/openai模块。 -
对于需要传递特定参数或有不完全兼容情况的第三方服务,使用
@ai-sdk/openai-compatible模块。 -
在对接新模型时,建议先查阅服务商的API文档,了解其特有的参数和功能。
-
可以通过网络请求调试工具验证最终发出的请求参数是否符合预期。
总结
Vercel AI SDK提供了灵活的模块化设计,使开发者能够轻松对接各种大模型服务。通过正确选择和使用@ai-sdk/openai-compatible模块,开发者可以充分利用第三方模型的特有功能,同时保持代码的简洁性和可维护性。这一经验不仅适用于阿里云通义千问模型,也可推广到其他兼容OpenAI API的第三方模型服务。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00