Axolotl项目中梯度累积与损失值计算的技术解析
2025-05-25 09:11:21作者:邬祺芯Juliet
在深度学习训练过程中,梯度累积(Gradient Accumulation,简称GA)是一种常见的技术优化手段,它允许我们在有限的GPU内存条件下模拟更大的批量训练。然而,近期在Axolotl项目中,有开发者报告了一个关于梯度累积与损失值计算的技术问题,值得深入探讨。
问题背景
在Axolotl项目的训练过程中,开发者注意到一个异常现象:当使用梯度累积时,日志中显示的损失值和梯度范数(grad_norm)似乎不是按步长平均后的值,而是所有累积步骤的总和。例如,当使用8个累积步骤时,损失值显示为7.9071,而理论上应该是这个值除以8,即约0.988。
技术原理分析
在标准的深度学习训练流程中,梯度累积的工作原理是:
- 在前向传播过程中,计算每个小批量的损失
- 在反向传播过程中,累积多个小批量的梯度
- 只在累积步骤完成后才更新模型参数
对于损失值的记录,通常有两种处理方式:
- 记录每个小批量的原始损失值(总和)
- 记录平均后的损失值(总和除以累积步数)
Axolotl项目在最近的修复后,似乎采用了第一种方式,即直接记录原始总和,这导致了损失值显示上的"放大"效应。
影响评估
值得注意的是,这个问题主要影响的是日志显示和监控,而不影响实际的训练过程:
- 模型训练本身是正确的,梯度计算和参数更新都按照预期工作
- 评估指标(evaluation metrics)显示正常
- 最终模型性能不受影响
多位开发者验证了这一现象:
- 使用梯度累积步数为2时,初始损失约为2.715
- 使用梯度累积步数为8时,初始损失约为10.848
- 将后者除以4(8/2=4)后,结果与前者非常接近
解决方案与验证
根据开发者反馈,这个问题可以通过以下方式解决:
- 更新相关依赖库:
- 将transformers升级到4.46.2版本
- 将liger升级到0.4.0版本
项目维护者也进行了详细的对比测试,包括:
- 打包(packing)和非打包训练场景
- 不同梯度累积步数的比较
- 与TRL(Transformer Reinforcement Learning)库的对比
测试结果表明,在更新依赖后,损失值的显示恢复正常,与理论预期一致。
最佳实践建议
对于使用Axolotl进行模型训练的开发者,建议:
- 保持依赖库的最新版本
- 在比较不同梯度累积步数的训练时,注意损失值的缩放关系
- 关注评估指标而非单纯依赖训练损失值
- 在调整梯度累积步数时,相应调整学习率等超参数
这个案例也提醒我们,在深度学习训练中,监控指标的计算方式需要与训练策略相匹配,才能提供有意义的参考信息。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328