Langroid项目中OpenAI API流式响应中的令牌使用信息获取优化
2025-06-25 13:12:26作者:滕妙奇
在Langroid项目的开发过程中,处理OpenAI API的流式响应时遇到了一个关键的技术挑战:如何准确获取令牌使用信息。本文将深入探讨这个问题的背景、技术细节以及解决方案。
背景与问题
OpenAI API的流式响应模式(streaming responses)长期以来存在一个限制:无法直接获取完整的令牌使用统计信息。这对于需要精确计算API调用成本的开发者来说是个明显的痛点。特别是在使用"思考型"语言模型(如o1系列)时,传统的客户端计算方式无法准确捕获模型"思考"过程中消耗的令牌。
技术细节
OpenAI API在非流式响应中会返回完整的usage对象,包含:
- prompt_tokens:提示消耗的令牌数
- completion_tokens:补全消耗的令牌数
- total_tokens:总令牌数
但在流式响应中,这些信息原本是缺失的。随着OpenAI API的更新,现在可以通过在流式选项中设置include_usage标志来获取这些关键数据。
解决方案
Langroid项目通过以下方式优化了这一功能:
- 在流式响应处理中,检查每个返回的chunk对象是否包含usage信息
- 优先使用API直接提供的usage数据,而非客户端估算
- 对于不支持usage信息的旧版本API,回退到客户端计算逻辑
这种改进特别有利于:
- 成本精确计算:直接获取API提供的令牌数更准确
- 性能监控:实时了解模型思考过程中的令牌消耗
- 预算控制:基于精确数据做出API调用决策
实现意义
这一优化使得Langroid项目在处理OpenAI流式响应时能够:
- 提高令牌计算的准确性,特别是对思考型模型
- 减少客户端计算开销
- 提供更精细的API使用分析能力
对于开发者而言,这意味着可以更自信地使用流式响应功能,同时保持对资源消耗的精确掌控。这一改进也体现了Langroid项目紧跟OpenAI API发展,持续优化用户体验的承诺。
总结
通过利用OpenAI API的最新功能,Langroid项目成功解决了流式响应中令牌信息获取的难题。这一技术改进不仅提升了系统的准确性,也为开发者提供了更好的工具来管理和优化他们的AI应用资源使用。随着AI技术的不断发展,保持对API功能的及时跟进和优化将成为项目成功的关键因素之一。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328