【亲测免费】 Graph Transformer PyTorch 使用教程
2026-01-18 09:55:52作者:齐添朝
项目介绍
Graph Transformer PyTorch 是一个基于 PyTorch 的图神经网络库,专门用于处理图结构数据。该项目由 lucidrains 开发,旨在提供一个高效、灵活的工具,用于实现和实验各种图变换器模型。Graph Transformer 结合了注意力机制和图神经网络的优势,适用于节点分类、图分类、链接预测等多种任务。
项目快速启动
安装
首先,确保你已经安装了 PyTorch。然后,通过以下命令安装 Graph Transformer PyTorch:
pip install graph-transformer-pytorch
示例代码
以下是一个简单的示例,展示如何使用 Graph Transformer 模型处理图数据:
import torch
from graph_transformer_pytorch import GraphTransformer
# 定义模型参数
model = GraphTransformer(
dim=256,
depth=6,
edge_dim=512,
with_feedforwards=True,
gated_residual=True,
rel_pos_emb=True
)
# 生成示例数据
nodes = torch.randn(1, 128, 256)
edges = torch.randn(1, 128, 128, 512)
mask = torch.ones(1, 128).bool()
# 前向传播
nodes, edges = model(nodes, edges, mask=mask)
print(nodes.shape) # 输出: (1, 128, 256)
应用案例和最佳实践
节点分类
Graph Transformer 可以用于节点分类任务。以下是一个简单的节点分类示例:
import torch
from graph_transformer_pytorch import GraphTransformer
# 定义模型
model = GraphTransformer(
dim=128,
depth=4,
edge_dim=128,
with_feedforwards=True,
gated_residual=True
)
# 示例数据
nodes = torch.randn(1, 100, 128)
edges = torch.randn(1, 100, 100, 128)
mask = torch.ones(1, 100).bool()
labels = torch.randint(0, 2, (1, 100))
# 前向传播
node_embeddings, _ = model(nodes, edges, mask=mask)
# 分类
logits = node_embeddings.mean(dim=1)
loss = torch.nn.functional.cross_entropy(logits, labels.squeeze())
print(loss)
图分类
Graph Transformer 也可以用于图分类任务。以下是一个简单的图分类示例:
import torch
from graph_transformer_pytorch import GraphTransformer
# 定义模型
model = GraphTransformer(
dim=128,
depth=4,
edge_dim=128,
with_feedforwards=True,
gated_residual=True
)
# 示例数据
nodes = torch.randn(1, 100, 128)
edges = torch.randn(1, 100, 100, 128)
mask = torch.ones(1, 100).bool()
labels = torch.randint(0, 2, (1,))
# 前向传播
node_embeddings, _ = model(nodes, edges, mask=mask)
# 图级别的表示
graph_embedding = node_embeddings.mean(dim=1)
# 分类
logits = graph_embedding.squeeze()
loss = torch.nn.functional.cross_entropy(logits, labels)
print(loss)
典型生态项目
AlphaFold2 复现
Graph Transformer PyTorch 可以用于复现 AlphaFold2,这是一个用于蛋白质结构预测的先进模型。以下是一个简单的示例:
import torch
from graph_transformer_pytorch import GraphTransformer
# 定义模型
model = GraphTransformer(
dim=256,
depth=6,
edge_dim=512,
with_feedfor
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882