Underscore.php 技术文档
2024-12-25 23:24:18作者:咎竹峻Karen
1. 安装指南
环境要求
- PHP 5.3 或更高版本
安装方式
-
通过 Composer 安装
- 在项目的
composer.json文件中添加以下依赖:{ "require": { "brianhaveri/underscore.php": "dev-master" } } - 运行以下命令安装依赖:
composer install
- 在项目的
-
手动下载安装
- 从 GitHub 下载项目的 ZIP 文件。
- 解压文件并将
Underscore.php文件放置在项目的合适位置。 - 在项目中引入
Underscore.php文件:require_once 'path/to/Underscore.php';
2. 项目的使用说明
基本用法
Underscore.php 是一个 PHP 版本的 Underscore.js 库,提供了丰富的函数式编程工具。以下是一些基本的使用示例:
示例 1:遍历数组
$numbers = array(1, 2, 3, 4, 5);
__::each($numbers, function($num) {
echo $num . ' ';
});
// 输出: 1 2 3 4 5
示例 2:映射数组
$numbers = array(1, 2, 3, 4, 5);
$doubled = __::map($numbers, function($num) {
return $num * 2;
});
// $doubled 现在是 array(2, 4, 6, 8, 10)
示例 3:过滤数组
$numbers = array(1, 2, 3, 4, 5);
$evens = __::filter($numbers, function($num) {
return $num % 2 === 0;
});
// $evens 现在是 array(2, 4)
3. 项目API使用文档
集合函数
each
遍历集合中的每个元素,并将其传递给迭代器函数。
__::each(array(1, 2, 3), function($num) { echo $num; });
map
对集合中的每个元素应用迭代器函数,并返回一个新的数组。
$result = __::map(array(1, 2, 3), function($num) { return $num * 2; });
filter
返回通过迭代器函数测试的元素组成的数组。
$result = __::filter(array(1, 2, 3, 4), function($num) { return $num % 2 === 0; });
数组函数
first
返回数组的第一个元素。
$result = __::first(array(1, 2, 3));
last
返回数组的最后一个元素。
$result = __::last(array(1, 2, 3));
compact
去除数组中的 false 值。
$result = __::compact(array(0, 1, false, 2, null, 3));
对象函数
keys
返回对象的所有键。
$result = __::keys((object) array('name' => 'John', 'age' => 30));
values
返回对象的所有值。
$result = __::values((object) array('name' => 'John', 'age' => 30));
实用函数
identity
返回传入的参数。
$result = __::identity(1);
times
执行指定次数的回调函数。
__::times(3, function() { echo 'Hello'; });
4. 项目安装方式
通过 Composer 安装
composer require brianhaveri/underscore.php
手动下载安装
- 下载项目的 ZIP 文件。
- 解压文件并将
Underscore.php文件放置在项目的合适位置。 - 在项目中引入
Underscore.php文件:require_once 'path/to/Underscore.php';
通过以上步骤,您可以成功安装并使用 Underscore.php 项目。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759