CARLA模拟器中为行人角色添加自定义属性的技术实现
在CARLA自动驾驶仿真平台中,行人(Walker)是重要的交通参与者之一。本文将详细介绍如何在CARLA 0.9.13版本中为行人角色添加自定义布尔属性,使其能够通过Python脚本进行动态设置。
背景与需求分析
CARLA提供了丰富的API允许用户通过Python脚本控制仿真环境中的各种元素。对于行人角色,系统已经内置了一些可配置属性如"is_invincible"(无敌状态)、"speed"(移动速度)等。但在实际项目中,开发者可能需要为行人添加更多自定义属性以满足特定仿真需求。
技术实现方案
1. 修改底层数据结构
首先需要在C++层面对行人的参数结构体进行扩展。在PedestriansParameters.h文件中,我们为FPedestrianParameters结构体添加新的布尔成员变量:
UPROPERTY(EditAnywhere, BlueprintReadWrite)
bool on_wheelchair = false;
这个声明确保了该属性:
- 可以在编辑器中进行编辑(
EditAnywhere) - 可以在蓝图中读写(
BlueprintReadWrite) - 默认值为false
2. 注册属性到蓝图系统
接下来需要在ActorBlueprintFunctionLibrary.cpp文件中注册这个新属性,使其能够被蓝图系统和Python API识别:
FActorVariation OnWheelchair;
OnWheelchair.Id = TEXT("on_wheelchair");
OnWheelchair.Type = EActorAttributeType::Bool;
OnWheelchair.RecommendedValues = { TEXT("false") };
OnWheelchair.bRestrictToRecommended = false;
这段代码定义了属性的:
- 唯一标识符("on_wheelchair")
- 类型(布尔型)
- 推荐值(默认为false)
- 是否限制只能使用推荐值(false表示不限制)
3. 属性映射处理
在WalkerFactory蓝图中,系统会自动收集所有已注册的行人属性并建立映射关系。通过调试输出可以看到,新添加的"on_wheelchair"属性已经成功包含在属性列表中:
on_wheelchair
role_name
gender
speed
is_invincible
generation
age
使用方式
完成上述修改并重新编译后,即可在Python脚本中使用新添加的属性:
walker_bp = world.get_blueprint_library().filter('walker.*')[0]
walker_bp.set_attribute('on_wheelchair', 'true') # 设置为使用轮椅
walker_bp.set_attribute('on_wheelchair', 'false') # 设置为不使用轮椅
注意事项
-
编译问题:如果在添加属性后遇到编译错误,需要检查所有相关文件的修改是否完整,特别是头文件的包含关系。
-
命名规范:属性ID建议使用小写字母和下划线的组合,保持与现有属性一致的命名风格。
-
类型匹配:确保在Python脚本中设置属性值时,字符串形式的布尔值必须为"true"或"false"。
-
版本兼容性:本文方案基于CARLA 0.9.13版本实现,其他版本可能需要适当调整。
扩展应用
掌握了为行人添加基本属性的方法后,开发者可以进一步扩展:
- 添加更多类型的属性(如整型、浮点型、字符串等)
- 实现属性间的联动逻辑
- 在行人行为树中使用这些自定义属性
- 基于属性值实现不同的行人动画效果
通过这种灵活的属性扩展机制,CARLA能够更好地适应各种自动驾驶仿真场景的需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00