CARLA模拟器中为行人角色添加自定义属性的技术实现
在CARLA自动驾驶仿真平台中,行人(Walker)是重要的交通参与者之一。本文将详细介绍如何在CARLA 0.9.13版本中为行人角色添加自定义布尔属性,使其能够通过Python脚本进行动态设置。
背景与需求分析
CARLA提供了丰富的API允许用户通过Python脚本控制仿真环境中的各种元素。对于行人角色,系统已经内置了一些可配置属性如"is_invincible"(无敌状态)、"speed"(移动速度)等。但在实际项目中,开发者可能需要为行人添加更多自定义属性以满足特定仿真需求。
技术实现方案
1. 修改底层数据结构
首先需要在C++层面对行人的参数结构体进行扩展。在PedestriansParameters.h文件中,我们为FPedestrianParameters结构体添加新的布尔成员变量:
UPROPERTY(EditAnywhere, BlueprintReadWrite)
bool on_wheelchair = false;
这个声明确保了该属性:
- 可以在编辑器中进行编辑(
EditAnywhere) - 可以在蓝图中读写(
BlueprintReadWrite) - 默认值为false
2. 注册属性到蓝图系统
接下来需要在ActorBlueprintFunctionLibrary.cpp文件中注册这个新属性,使其能够被蓝图系统和Python API识别:
FActorVariation OnWheelchair;
OnWheelchair.Id = TEXT("on_wheelchair");
OnWheelchair.Type = EActorAttributeType::Bool;
OnWheelchair.RecommendedValues = { TEXT("false") };
OnWheelchair.bRestrictToRecommended = false;
这段代码定义了属性的:
- 唯一标识符("on_wheelchair")
- 类型(布尔型)
- 推荐值(默认为false)
- 是否限制只能使用推荐值(false表示不限制)
3. 属性映射处理
在WalkerFactory蓝图中,系统会自动收集所有已注册的行人属性并建立映射关系。通过调试输出可以看到,新添加的"on_wheelchair"属性已经成功包含在属性列表中:
on_wheelchair
role_name
gender
speed
is_invincible
generation
age
使用方式
完成上述修改并重新编译后,即可在Python脚本中使用新添加的属性:
walker_bp = world.get_blueprint_library().filter('walker.*')[0]
walker_bp.set_attribute('on_wheelchair', 'true') # 设置为使用轮椅
walker_bp.set_attribute('on_wheelchair', 'false') # 设置为不使用轮椅
注意事项
-
编译问题:如果在添加属性后遇到编译错误,需要检查所有相关文件的修改是否完整,特别是头文件的包含关系。
-
命名规范:属性ID建议使用小写字母和下划线的组合,保持与现有属性一致的命名风格。
-
类型匹配:确保在Python脚本中设置属性值时,字符串形式的布尔值必须为"true"或"false"。
-
版本兼容性:本文方案基于CARLA 0.9.13版本实现,其他版本可能需要适当调整。
扩展应用
掌握了为行人添加基本属性的方法后,开发者可以进一步扩展:
- 添加更多类型的属性(如整型、浮点型、字符串等)
- 实现属性间的联动逻辑
- 在行人行为树中使用这些自定义属性
- 基于属性值实现不同的行人动画效果
通过这种灵活的属性扩展机制,CARLA能够更好地适应各种自动驾驶仿真场景的需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00