监控metrics系列——Prometheus Client_golang使用指南
2024-08-10 23:55:14作者:范靓好Udolf
一、项目介绍
Prometheus Client_golang是Prometheus监控生态系统中的重要组件之一,专门为Golang应用程序提供了Prometheus监控指标的嵌入式工具包。此库支持Prometheus的数据采集标准和API,允许您轻松地在Golang服务中添加监控功能。
主要特性
- 简单易用: 提供了一系列API简化在Golang服务中增加监控指标的过程。
- 功能完备: 支持多种类型的度量类型,包括计数器、摘要、直方图等。
- 高度兼容性: 严格遵循Prometheus的数据模型,确保无缝集成至Prometheus服务器或Grafana视图。
核心组件
prometheus: 核心仪表盘库,用于创建各种类型的度量。examples: 示例目录,展示了如何使用Client_golang进行常用操作和高级用例。api: 包含了对Prometheus HTTP API的客户端绑定。
版本要求
Prometheus Client_golang要求至少使用Go1.20版本,对于旧版本的Go(如Go1.17),虽然可以运行,但是只保证最新三个主要版本的支持。
二、项目快速启动
要在您的Golang项目中引入Prometheus Client_golang并立即开始监控,您可以参考以下步骤:
第一步:导入库
首先,在你的main.go文件或适当的初始化文件中,导入必要的Client_golang包:
import (
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promhttp"
)
第二步:注册度量
接下来,定义并注册您的第一个监控指标:
var myCounter = prometheus.NewCounter(
prometheus.CounterOpts{
Name: "my_service_requests_total",
Help: "Total number of service requests.",
},
)
func init() {
// Register your metric with the global registry.
prometheus.MustRegister(myCounter)
}
第三步:更新度量值
每次当您的服务处理完一个请求,即可更新此计数器:
// Increment the counter each time a request completes.
myCounter.Inc()
第四步:启动HTTP服务
最后,启动一个HTTP服务以暴露Prometheus格式的指标数据给监控代理:
func main() {
// Expose the registered metrics via HTTP.
http.Handle("/metrics", promhttp.Handler())
log.Fatal(http.ListenAndServe(":8080", nil))
}
三、应用案例和最佳实践
案例分析:记录RPC延迟分布
作为示例,我们可以采用随机分布(均匀、正态、指数)来表示虚构的RPC延迟性能,并将其作为Prometheus监控指标进行曝光:
package main
import (
"math/rand"
"time"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promhttp"
"net/http"
"log"
)
var uniformLatency = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "rpc_uniform_latency_seconds",
Help: "Latency distribution of uniform random RPCs.",
Buckets: []float64{0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1},
})
var normalLatency = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "rpc_normal_latency_seconds",
Help: "Latency distribution of normally distributed RPCs.",
Buckets: prometheus.ExponentialBuckets(0.001, 2, 10),
})
var expLatency = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "rpc_exponential_latency_seconds",
Help: "Latency distribution of exponentially distributed RPCs.",
Buckets: prometheus.ExponentialBuckets(0.001, 2, 10),
})
func init() {
prometheus.MustRegister(uniformLatency, normalLatency, expLatency)
}
func recordRandomLatency() float64 {
return rand.ExpFloat64()*rand.NormFloat64() + rand.Float64()
}
func main() {
http.Handle("/metrics", promhttp.Handler())
for {
lat := recordRandomLatency()
uniformLatency.Observe(lat)
normalLatency.Observe(lat)
expLatency.Observe(lat)
time.Sleep(time.Millisecond * 10)
}
log.Fatal(http.ListenAndServe(":8080", nil))
}
最佳实践
- 维护清晰的度量命名规则,避免名称冲突和理解模糊。
- 使用Labels(标签)进行更细粒度的监控。
- 对关键信息进行过滤,防止无意间泄露。
四、典型生态项目
Prometheus Client_golang是Prometheus监控生态系统的重要部分,它促进了各种不同技术栈的整合。典型的生态项目可能包括:
- Node Exporter: 用于收集主机系统的硬件和操作系统级别的数据,适用于各种Linux发行版。
- Blackbox Exporter: 端点可用性和响应时间测试的解决方案,能够模拟"黑盒"场景下的网络服务健康状态检查。
- Pushgateway: 允许周期性的将短期作业(例如批处理任务)的样本指标推送到Prometheus,弥补Pull机制下难以捕捉的指标。
这些生态项目丰富了Prometheus监控框架的功能,使其不仅局限于单一的应用服务监控,而是扩展到了基础设施、数据库、容器化环境等多个方面。
以上就是关于Prometheus Client_golang的基本介绍、快速启动指南以及一些应用案例和生态项目的综述。希望这能够帮助你在自己的项目中有效地利用此工具库提升服务监控水平。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1