miniSAM 开源项目使用教程
2024-09-19 15:28:26作者:庞队千Virginia
1. 项目介绍
miniSAM 是一个开源的 C++/Python 框架,专门用于解决基于因子图的最小二乘问题。该框架由 Jing Dong 和 Zhaoyang Lv 开发,最初作为 Math 6644 课程的最终项目于 2017 年开始,并在两位作者攻读博士学位期间兼职完成。miniSAM 的设计灵感主要来自 GTSAM,但相比 GTSAM,miniSAM 更加轻量级,并且提供了完整的 Python/NumPy API,使得开发更加敏捷,并且易于与现有的 Python 项目集成。此外,miniSAM 支持多种稀疏线性求解器,包括 CUDA 加速的稀疏线性求解器。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- CMake 3.4+
- Eigen 3.3.0+
- Python 2.7/3.4+(可选,用于使用 Python 包)
- SuiteSparse(可选,用于使用 CHOLMOD 和 SPQR 稀疏线性求解器)
- CUDA 9.0+(可选,用于使用 cuSOLVER Cholesky 稀疏线性求解器)
2.2 下载和编译
# 克隆项目仓库
git clone --recurse-submodules https://github.com/dongjing3309/minisam.git
# 创建并进入构建目录
mkdir build
cd build
# 配置和编译项目
cmake ..
make
# 可选:运行单元测试
make check
2.3 使用 Python 包
如果您希望使用 miniSAM 的 Python 接口,可以通过以下命令安装 Python 包:
pip install minisam
3. 应用案例和最佳实践
3.1 2D 位姿图示例
miniSAM 可以用于解决各种基于因子图的最小二乘问题,例如 2D 位姿图优化。以下是一个简单的 2D 位姿图优化示例:
import minisam
# 创建因子图
graph = minisam.FactorGraph()
# 添加因子
graph.add(minisam.PriorFactor(0, minisam.Pose2(0, 0, 0), minisam.noiseModel.Isotropic.Sigma(3, 0.1)))
# 创建初始估计
initial_estimate = minisam.Variables()
initial_estimate.add(0, minisam.Pose2(0.1, 0.1, 0.1))
# 优化
optimizer = minisam.LevenbergMarquardtOptimizer(graph, initial_estimate)
result = optimizer.optimize()
# 输出结果
print(result)
3.2 GPS 因子示例
miniSAM 还可以用于处理类似 GPS 的因子,以下是一个简单的 GPS 因子示例:
import minisam
# 创建因子图
graph = minisam.FactorGraph()
# 添加因子
graph.add(minisam.GPSFactor(0, minisam.Point3(1, 1, 1), minisam.noiseModel.Isotropic.Sigma(3, 0.1)))
# 创建初始估计
initial_estimate = minisam.Variables()
initial_estimate.add(0, minisam.Point3(0, 0, 0))
# 优化
optimizer = minisam.LevenbergMarquardtOptimizer(graph, initial_estimate)
result = optimizer.optimize()
# 输出结果
print(result)
4. 典型生态项目
miniSAM 作为一个灵活的因子图非线性最小二乘优化框架,可以与其他开源项目结合使用,例如:
- GTSAM: 一个著名的因子图框架,miniSAM 的设计灵感主要来自 GTSAM。
- Sophus: 一个 C++ 实现的 Lie 群库,miniSAM 使用 Sophus 来处理 SLAM 和多视图几何功能。
- SuiteSparse: 一个稀疏矩阵算法库,miniSAM 可以选择使用其中的 CHOLMOD 和 SPQR 稀疏线性求解器。
通过结合这些生态项目,miniSAM 可以进一步扩展其功能,适用于更广泛的优化问题。
热门项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4