Azure Data Studio Python 3.13 兼容性问题分析与解决方案
问题背景
在使用 Azure Data Studio 1.49.0 或 1.49.1 版本时,用户在新机器上安装 Python 3.13 后尝试打开现有的 Python notebook 文件时遇到了依赖安装失败的问题。系统提示需要安装 Jupyter notebook 等依赖项,但在安装过程中出现了 pyzmq 相关的错误。
错误现象
当用户点击"安装"按钮后,系统尝试执行以下 pip 安装命令:
"C:\Program Files\Python313\python.exe" -m pip install --user "jupyter>=1.0.0" "notebook==6.5.6" "ipykernel==5.5.5"
安装过程中,系统尝试安装 pyzmq-24.0.1 版本时失败,错误信息显示:
AttributeError: module 'setuptools.msvc' has no attribute 'msvc14_get_vc_env'
根本原因分析
这个问题主要由以下几个因素共同导致:
-
Python 3.13 兼容性问题:Azure Data Studio 当前版本中指定的 notebook 和 ipykernel 版本(notebook==6.5.6 和 ipykernel==5.5.5)所依赖的 pyzmq 版本(24.0.1)与 Python 3.13 不兼容。
-
setuptools 接口变更:错误信息表明 setuptools.msvc 模块中缺少 msvc14_get_vc_env 属性,这是由于较新版本的 setuptools 已经移除了这个接口。
-
版本锁定过严:Azure Data Studio 当前版本对 notebook 和 ipykernel 的版本要求过于严格,指定了精确版本而非兼容版本范围。
技术细节
pyzmq 是 ZeroMQ 的 Python 绑定,是 Jupyter notebook 生态系统的核心依赖之一。在 Python 3.13 环境下,pyzmq 需要 25.1.1 或更高版本才能正常工作。而 Azure Data Studio 当前版本强制安装的 notebook 6.5.6 版本却依赖较旧的 pyzmq 24.0.1 版本,导致了兼容性问题。
解决方案
根据微软开发团队的反馈,此问题已在主分支中修复,并将包含在 2025 年 1 月的发布版本中。在此期间,用户可以尝试以下临时解决方案:
-
降级 Python 版本:暂时使用 Python 3.11 或 3.12 版本,这些版本与当前 Azure Data Studio 的依赖要求更为兼容。
-
手动安装依赖:可以尝试手动安装更新版本的依赖项:
pip install --user "jupyter>=1.0.0" "notebook>=7.0.0" "ipykernel>=6.0.0" "pyzmq>=25.1.1" -
等待官方更新:最稳妥的解决方案是等待 Azure Data Studio 的 2025 年 1 月更新发布,该版本将包含对此问题的官方修复。
最佳实践建议
-
在生产环境中使用 Python 与 Azure Data Studio 集成时,建议选择经过充分测试的 Python 版本(如 3.11 或 3.12)。
-
定期更新 Azure Data Studio 和 Python 环境,以获取最新的兼容性修复和安全更新。
-
在升级 Python 主版本前,建议先在测试环境中验证所有依赖组件的兼容性。
-
对于关键业务场景,考虑使用虚拟环境或容器化技术来隔离不同项目的依赖关系。
总结
Python 生态系统的快速发展带来了版本兼容性方面的挑战。Azure Data Studio 团队已经意识到这个问题,并将在即将发布的版本中提供解决方案。在此期间,用户可以通过上述临时方案解决问题,或选择等待官方更新以获得最佳兼容性体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00