AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.12版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像服务,它集成了主流深度学习框架和工具,帮助开发者快速部署深度学习工作负载。这些容器镜像经过AWS优化,可直接在EC2等云服务上运行,大大简化了深度学习环境的配置过程。
近日,AWS DLC项目发布了针对ARM64架构的PyTorch推理镜像v1.12版本,主要包含两个重要镜像更新:
1. CPU版本PyTorch推理镜像
该镜像基于Ubuntu 22.04操作系统,预装了PyTorch 2.5.1 CPU版本及Python 3.11环境。镜像中包含了完整的PyTorch生态系统工具链,如torchaudio(2.5.1)、torchvision(0.20.1)等,同时还预装了常用的数据处理和科学计算库,如NumPy(2.1.3)、SciPy(1.14.1)和OpenCV(4.10.0.84)等。
值得注意的是,该镜像还包含了TorchServe(0.12.0)和Torch Model Archiver(0.12.0)工具,方便用户直接部署PyTorch模型服务。此外,AWS CLI工具(1.36.7)和boto3(1.35.66)SDK也已预装,便于与AWS服务集成。
2. GPU版本PyTorch推理镜像
GPU版本同样基于Ubuntu 22.04和Python 3.11,但针对NVIDIA CUDA 12.4进行了优化。除了包含CPU版本的所有功能外,GPU版本还预装了CUDA 12.4工具链和cuDNN库,确保能够充分利用NVIDIA GPU的加速能力。
该镜像中的PyTorch版本(2.5.1)已针对CUDA 12.4进行编译优化,同时torchvision(0.20.1)和torchaudio(2.5.1)也支持GPU加速。额外还包含了Pandas(2.2.3)等数据处理库,为大规模数据预处理提供支持。
技术特点与优势
这两个ARM64架构的PyTorch推理镜像具有以下显著特点:
- 
性能优化:针对AWS Graviton处理器(ARM架构)进行了专门优化,相比x86架构可提供更好的性价比。
 - 
完整工具链:预装了从模型训练到服务部署的全套工具,包括模型归档工具(torch-model-archiver)和服务框架(torchserve)。
 - 
生产就绪:包含必要的系统依赖和安全更新,如libgcc和libstdc++等基础库的最新版本。
 - 
开发友好:预装了Emacs等开发工具,方便开发者直接在容器内进行调试和开发。
 
对于需要在ARM架构上部署PyTorch推理服务的用户,这些预构建的容器镜像可以节省大量环境配置时间,同时确保获得AWS官方优化的性能表现。用户可以直接在EC2 Graviton实例上部署这些镜像,快速构建高效的推理服务。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00