Crawl4AI项目文档示例代码的语法错误分析与修复
2025-05-02 10:57:15作者:蔡丛锟
在Crawl4AI这个强大的异步网络爬虫框架中,文档示例代码是开发者快速上手的重要参考。然而,近期有用户发现官方文档中的示例代码存在多处语法错误,这可能会给初学者带来困扰。本文将详细分析这些错误,并提供正确的代码实现。
问题分析
原始示例代码主要存在以下几类问题:
- 括号不匹配:在
DefaultMarkdownGenerator初始化时缺少右括号 - 导入缺失:未导入
LLMContentFilter和DefaultMarkdownGenerator类 - 语法格式:部分代码缩进不规范,参数对齐不一致
正确的代码实现
以下是修正后的完整代码示例:
import asyncio
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode, LLMConfig
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
from crawl4ai import LLMContentFilter, DefaultMarkdownGenerator
async def main():
# 浏览器配置
browser_conf = BrowserConfig(
headless=True,
viewport_width=1280,
viewport_height=720
)
# 数据提取策略
schema = {
"name": "Articles",
"baseSelector": "div.article",
"fields": [
{"name": "title", "selector": "h2", "type": "text"},
{"name": "link", "selector": "a", "type": "attribute", "attribute": "href"}
]
}
extraction = JsonCssExtractionStrategy(schema)
# LLM配置
gemini_config = LLMConfig(
provider="gemini/gemini-1.5-pro",
api_token="env:GEMINI_API_TOKEN"
)
# 内容过滤器
filter = LLMContentFilter(
llm_config=gemini_config,
instruction="""
专注于提取核心教育内容。
包括:
- 关键概念和解释
- 重要代码示例
- 必要的技术细节
排除:
- 导航元素
- 侧边栏
- 页脚内容
输出格式化为干净的Markdown,带有适当的代码块和标题。
""",
chunk_token_threshold=500,
verbose=True
)
# Markdown生成器
md_generator = DefaultMarkdownGenerator(
content_filter=filter,
options={"ignore_links": True}
)
# 爬虫运行配置
run_conf = CrawlerRunConfig(
markdown_generator=md_generator,
extraction_strategy=extraction,
cache_mode=CacheMode.BYPASS,
)
async with AsyncWebCrawler(config=browser_conf) as crawler:
result = await crawler.arun(url="https://example.com/news", config=run_conf)
if result.success:
print("提取的内容:", result.extracted_content)
else:
print("错误:", result.error_message)
if __name__ == "__main__":
asyncio.run(main())
关键组件解析
- BrowserConfig:配置浏览器行为,包括是否无头模式、视口大小等
- JsonCssExtractionStrategy:基于CSS选择器的结构化数据提取策略
- LLMContentFilter:利用大语言模型对内容进行智能过滤和格式化
- DefaultMarkdownGenerator:将网页内容转换为Markdown格式
最佳实践建议
- 始终检查代码的括号匹配和缩进
- 确保所有使用的类都已正确导入
- 对于复杂的爬取任务,建议先测试简单的配置再逐步增加功能
- 合理设置
chunk_token_threshold参数以平衡处理效率和内容完整性
通过本文的分析和修正,开发者可以避免文档示例中的常见陷阱,更高效地使用Crawl4AI框架进行网页内容抓取和处理。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135