Crawl4AI项目文档示例代码的语法错误分析与修复
2025-05-02 07:33:51作者:蔡丛锟
在Crawl4AI这个强大的异步网络爬虫框架中,文档示例代码是开发者快速上手的重要参考。然而,近期有用户发现官方文档中的示例代码存在多处语法错误,这可能会给初学者带来困扰。本文将详细分析这些错误,并提供正确的代码实现。
问题分析
原始示例代码主要存在以下几类问题:
- 括号不匹配:在
DefaultMarkdownGenerator初始化时缺少右括号 - 导入缺失:未导入
LLMContentFilter和DefaultMarkdownGenerator类 - 语法格式:部分代码缩进不规范,参数对齐不一致
正确的代码实现
以下是修正后的完整代码示例:
import asyncio
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode, LLMConfig
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
from crawl4ai import LLMContentFilter, DefaultMarkdownGenerator
async def main():
# 浏览器配置
browser_conf = BrowserConfig(
headless=True,
viewport_width=1280,
viewport_height=720
)
# 数据提取策略
schema = {
"name": "Articles",
"baseSelector": "div.article",
"fields": [
{"name": "title", "selector": "h2", "type": "text"},
{"name": "link", "selector": "a", "type": "attribute", "attribute": "href"}
]
}
extraction = JsonCssExtractionStrategy(schema)
# LLM配置
gemini_config = LLMConfig(
provider="gemini/gemini-1.5-pro",
api_token="env:GEMINI_API_TOKEN"
)
# 内容过滤器
filter = LLMContentFilter(
llm_config=gemini_config,
instruction="""
专注于提取核心教育内容。
包括:
- 关键概念和解释
- 重要代码示例
- 必要的技术细节
排除:
- 导航元素
- 侧边栏
- 页脚内容
输出格式化为干净的Markdown,带有适当的代码块和标题。
""",
chunk_token_threshold=500,
verbose=True
)
# Markdown生成器
md_generator = DefaultMarkdownGenerator(
content_filter=filter,
options={"ignore_links": True}
)
# 爬虫运行配置
run_conf = CrawlerRunConfig(
markdown_generator=md_generator,
extraction_strategy=extraction,
cache_mode=CacheMode.BYPASS,
)
async with AsyncWebCrawler(config=browser_conf) as crawler:
result = await crawler.arun(url="https://example.com/news", config=run_conf)
if result.success:
print("提取的内容:", result.extracted_content)
else:
print("错误:", result.error_message)
if __name__ == "__main__":
asyncio.run(main())
关键组件解析
- BrowserConfig:配置浏览器行为,包括是否无头模式、视口大小等
- JsonCssExtractionStrategy:基于CSS选择器的结构化数据提取策略
- LLMContentFilter:利用大语言模型对内容进行智能过滤和格式化
- DefaultMarkdownGenerator:将网页内容转换为Markdown格式
最佳实践建议
- 始终检查代码的括号匹配和缩进
- 确保所有使用的类都已正确导入
- 对于复杂的爬取任务,建议先测试简单的配置再逐步增加功能
- 合理设置
chunk_token_threshold参数以平衡处理效率和内容完整性
通过本文的分析和修正,开发者可以避免文档示例中的常见陷阱,更高效地使用Crawl4AI框架进行网页内容抓取和处理。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
211
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319