Crawl4AI项目文档示例代码的语法错误分析与修复
2025-05-02 16:32:24作者:蔡丛锟
在Crawl4AI这个强大的异步网络爬虫框架中,文档示例代码是开发者快速上手的重要参考。然而,近期有用户发现官方文档中的示例代码存在多处语法错误,这可能会给初学者带来困扰。本文将详细分析这些错误,并提供正确的代码实现。
问题分析
原始示例代码主要存在以下几类问题:
- 括号不匹配:在
DefaultMarkdownGenerator初始化时缺少右括号 - 导入缺失:未导入
LLMContentFilter和DefaultMarkdownGenerator类 - 语法格式:部分代码缩进不规范,参数对齐不一致
正确的代码实现
以下是修正后的完整代码示例:
import asyncio
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode, LLMConfig
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
from crawl4ai import LLMContentFilter, DefaultMarkdownGenerator
async def main():
# 浏览器配置
browser_conf = BrowserConfig(
headless=True,
viewport_width=1280,
viewport_height=720
)
# 数据提取策略
schema = {
"name": "Articles",
"baseSelector": "div.article",
"fields": [
{"name": "title", "selector": "h2", "type": "text"},
{"name": "link", "selector": "a", "type": "attribute", "attribute": "href"}
]
}
extraction = JsonCssExtractionStrategy(schema)
# LLM配置
gemini_config = LLMConfig(
provider="gemini/gemini-1.5-pro",
api_token="env:GEMINI_API_TOKEN"
)
# 内容过滤器
filter = LLMContentFilter(
llm_config=gemini_config,
instruction="""
专注于提取核心教育内容。
包括:
- 关键概念和解释
- 重要代码示例
- 必要的技术细节
排除:
- 导航元素
- 侧边栏
- 页脚内容
输出格式化为干净的Markdown,带有适当的代码块和标题。
""",
chunk_token_threshold=500,
verbose=True
)
# Markdown生成器
md_generator = DefaultMarkdownGenerator(
content_filter=filter,
options={"ignore_links": True}
)
# 爬虫运行配置
run_conf = CrawlerRunConfig(
markdown_generator=md_generator,
extraction_strategy=extraction,
cache_mode=CacheMode.BYPASS,
)
async with AsyncWebCrawler(config=browser_conf) as crawler:
result = await crawler.arun(url="https://example.com/news", config=run_conf)
if result.success:
print("提取的内容:", result.extracted_content)
else:
print("错误:", result.error_message)
if __name__ == "__main__":
asyncio.run(main())
关键组件解析
- BrowserConfig:配置浏览器行为,包括是否无头模式、视口大小等
- JsonCssExtractionStrategy:基于CSS选择器的结构化数据提取策略
- LLMContentFilter:利用大语言模型对内容进行智能过滤和格式化
- DefaultMarkdownGenerator:将网页内容转换为Markdown格式
最佳实践建议
- 始终检查代码的括号匹配和缩进
- 确保所有使用的类都已正确导入
- 对于复杂的爬取任务,建议先测试简单的配置再逐步增加功能
- 合理设置
chunk_token_threshold参数以平衡处理效率和内容完整性
通过本文的分析和修正,开发者可以避免文档示例中的常见陷阱,更高效地使用Crawl4AI框架进行网页内容抓取和处理。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
138
169
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
717
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460