Crawl4AI项目文档示例代码的语法错误分析与修复
2025-05-02 11:20:32作者:蔡丛锟
在Crawl4AI这个强大的异步网络爬虫框架中,文档示例代码是开发者快速上手的重要参考。然而,近期有用户发现官方文档中的示例代码存在多处语法错误,这可能会给初学者带来困扰。本文将详细分析这些错误,并提供正确的代码实现。
问题分析
原始示例代码主要存在以下几类问题:
- 括号不匹配:在
DefaultMarkdownGenerator初始化时缺少右括号 - 导入缺失:未导入
LLMContentFilter和DefaultMarkdownGenerator类 - 语法格式:部分代码缩进不规范,参数对齐不一致
正确的代码实现
以下是修正后的完整代码示例:
import asyncio
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode, LLMConfig
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
from crawl4ai import LLMContentFilter, DefaultMarkdownGenerator
async def main():
# 浏览器配置
browser_conf = BrowserConfig(
headless=True,
viewport_width=1280,
viewport_height=720
)
# 数据提取策略
schema = {
"name": "Articles",
"baseSelector": "div.article",
"fields": [
{"name": "title", "selector": "h2", "type": "text"},
{"name": "link", "selector": "a", "type": "attribute", "attribute": "href"}
]
}
extraction = JsonCssExtractionStrategy(schema)
# LLM配置
gemini_config = LLMConfig(
provider="gemini/gemini-1.5-pro",
api_token="env:GEMINI_API_TOKEN"
)
# 内容过滤器
filter = LLMContentFilter(
llm_config=gemini_config,
instruction="""
专注于提取核心教育内容。
包括:
- 关键概念和解释
- 重要代码示例
- 必要的技术细节
排除:
- 导航元素
- 侧边栏
- 页脚内容
输出格式化为干净的Markdown,带有适当的代码块和标题。
""",
chunk_token_threshold=500,
verbose=True
)
# Markdown生成器
md_generator = DefaultMarkdownGenerator(
content_filter=filter,
options={"ignore_links": True}
)
# 爬虫运行配置
run_conf = CrawlerRunConfig(
markdown_generator=md_generator,
extraction_strategy=extraction,
cache_mode=CacheMode.BYPASS,
)
async with AsyncWebCrawler(config=browser_conf) as crawler:
result = await crawler.arun(url="https://example.com/news", config=run_conf)
if result.success:
print("提取的内容:", result.extracted_content)
else:
print("错误:", result.error_message)
if __name__ == "__main__":
asyncio.run(main())
关键组件解析
- BrowserConfig:配置浏览器行为,包括是否无头模式、视口大小等
- JsonCssExtractionStrategy:基于CSS选择器的结构化数据提取策略
- LLMContentFilter:利用大语言模型对内容进行智能过滤和格式化
- DefaultMarkdownGenerator:将网页内容转换为Markdown格式
最佳实践建议
- 始终检查代码的括号匹配和缩进
- 确保所有使用的类都已正确导入
- 对于复杂的爬取任务,建议先测试简单的配置再逐步增加功能
- 合理设置
chunk_token_threshold参数以平衡处理效率和内容完整性
通过本文的分析和修正,开发者可以避免文档示例中的常见陷阱,更高效地使用Crawl4AI框架进行网页内容抓取和处理。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19