React Native Firebase 构建失败问题分析与解决:firebase-encoders-json 依赖问题
在 React Native 项目中使用 React Native Firebase 库时,Android 平台构建过程中可能会遇到 Failed to transform firebase-encoders-json-18.0.1.aar 的错误。这个问题通常与依赖仓库配置和版本冲突有关。
问题现象
当开发者尝试构建 Android 应用时,Gradle 构建系统会报错,提示无法转换 firebase-encoders-json 库的 AAR 文件。错误信息表明构建系统无法从配置的仓库中获取所需的依赖项。
根本原因
经过分析,这个问题主要有两个潜在原因:
-
使用了非官方仓库:项目中配置了阿里云的 Maven 仓库(maven.aliyun.com),这些第三方仓库可能没有同步所有 Firebase 相关的最新依赖项。
-
依赖版本冲突:项目中直接声明了多个 Firebase SDK 的版本,与 React Native Firebase 库自带的版本可能不一致。
解决方案
方法一:移除非官方仓库依赖
在 settings.gradle 文件中,移除所有指向阿里云 Maven 仓库的配置,仅保留 Google 官方仓库和其他必要的仓库:
dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.PREFER_SETTINGS)
repositories {
google()
mavenCentral()
// 其他必要的仓库...
}
}
方法二:统一依赖版本
确保所有 Firebase 相关依赖使用相同版本。React Native Firebase v20.4.0 对应的 Firebase Android SDK 版本应该是兼容的,避免直接声明旧版本:
dependencies {
// 避免直接声明这些旧版本
// implementation "com.google.firebase:firebase-analytics:18.0.0"
// implementation 'com.google.firebase:firebase-messaging:20.2.4'
// 使用 React Native Firebase 自动管理的版本
implementation(project(':@react-native-firebase_xxx'))
}
方法三:清理构建缓存
在修改配置后,执行以下命令清理 Gradle 缓存:
./gradlew clean
./gradlew --stop
rm -rf $HOME/.gradle/caches/
最佳实践建议
-
优先使用官方仓库:Google 的 Maven 仓库是最可靠的 Firebase 依赖来源。
-
避免混合使用不同来源的 Firebase SDK:要么全部使用 React Native Firebase 提供的封装,要么全部使用原生 SDK,不要混用。
-
保持依赖版本一致:定期检查并更新所有 Firebase 相关依赖到兼容版本。
-
使用 Gradle 依赖分析工具:可以通过
./gradlew dependencies命令分析依赖树,查找潜在的版本冲突。
通过以上方法,开发者可以有效解决 firebase-encoders-json 转换失败的问题,并建立更健壮的 Firebase 集成方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00