React Native Firebase 构建失败问题分析与解决:firebase-encoders-json 依赖问题
在 React Native 项目中使用 React Native Firebase 库时,Android 平台构建过程中可能会遇到 Failed to transform firebase-encoders-json-18.0.1.aar 的错误。这个问题通常与依赖仓库配置和版本冲突有关。
问题现象
当开发者尝试构建 Android 应用时,Gradle 构建系统会报错,提示无法转换 firebase-encoders-json 库的 AAR 文件。错误信息表明构建系统无法从配置的仓库中获取所需的依赖项。
根本原因
经过分析,这个问题主要有两个潜在原因:
-
使用了非官方仓库:项目中配置了阿里云的 Maven 仓库(maven.aliyun.com),这些第三方仓库可能没有同步所有 Firebase 相关的最新依赖项。
-
依赖版本冲突:项目中直接声明了多个 Firebase SDK 的版本,与 React Native Firebase 库自带的版本可能不一致。
解决方案
方法一:移除非官方仓库依赖
在 settings.gradle 文件中,移除所有指向阿里云 Maven 仓库的配置,仅保留 Google 官方仓库和其他必要的仓库:
dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.PREFER_SETTINGS)
repositories {
google()
mavenCentral()
// 其他必要的仓库...
}
}
方法二:统一依赖版本
确保所有 Firebase 相关依赖使用相同版本。React Native Firebase v20.4.0 对应的 Firebase Android SDK 版本应该是兼容的,避免直接声明旧版本:
dependencies {
// 避免直接声明这些旧版本
// implementation "com.google.firebase:firebase-analytics:18.0.0"
// implementation 'com.google.firebase:firebase-messaging:20.2.4'
// 使用 React Native Firebase 自动管理的版本
implementation(project(':@react-native-firebase_xxx'))
}
方法三:清理构建缓存
在修改配置后,执行以下命令清理 Gradle 缓存:
./gradlew clean
./gradlew --stop
rm -rf $HOME/.gradle/caches/
最佳实践建议
-
优先使用官方仓库:Google 的 Maven 仓库是最可靠的 Firebase 依赖来源。
-
避免混合使用不同来源的 Firebase SDK:要么全部使用 React Native Firebase 提供的封装,要么全部使用原生 SDK,不要混用。
-
保持依赖版本一致:定期检查并更新所有 Firebase 相关依赖到兼容版本。
-
使用 Gradle 依赖分析工具:可以通过
./gradlew dependencies命令分析依赖树,查找潜在的版本冲突。
通过以上方法,开发者可以有效解决 firebase-encoders-json 转换失败的问题,并建立更健壮的 Firebase 集成方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00