React Native Firebase 构建失败问题分析与解决:firebase-encoders-json 依赖问题
在 React Native 项目中使用 React Native Firebase 库时,Android 平台构建过程中可能会遇到 Failed to transform firebase-encoders-json-18.0.1.aar 的错误。这个问题通常与依赖仓库配置和版本冲突有关。
问题现象
当开发者尝试构建 Android 应用时,Gradle 构建系统会报错,提示无法转换 firebase-encoders-json 库的 AAR 文件。错误信息表明构建系统无法从配置的仓库中获取所需的依赖项。
根本原因
经过分析,这个问题主要有两个潜在原因:
-
使用了非官方仓库:项目中配置了阿里云的 Maven 仓库(maven.aliyun.com),这些第三方仓库可能没有同步所有 Firebase 相关的最新依赖项。
-
依赖版本冲突:项目中直接声明了多个 Firebase SDK 的版本,与 React Native Firebase 库自带的版本可能不一致。
解决方案
方法一:移除非官方仓库依赖
在 settings.gradle 文件中,移除所有指向阿里云 Maven 仓库的配置,仅保留 Google 官方仓库和其他必要的仓库:
dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.PREFER_SETTINGS)
repositories {
google()
mavenCentral()
// 其他必要的仓库...
}
}
方法二:统一依赖版本
确保所有 Firebase 相关依赖使用相同版本。React Native Firebase v20.4.0 对应的 Firebase Android SDK 版本应该是兼容的,避免直接声明旧版本:
dependencies {
// 避免直接声明这些旧版本
// implementation "com.google.firebase:firebase-analytics:18.0.0"
// implementation 'com.google.firebase:firebase-messaging:20.2.4'
// 使用 React Native Firebase 自动管理的版本
implementation(project(':@react-native-firebase_xxx'))
}
方法三:清理构建缓存
在修改配置后,执行以下命令清理 Gradle 缓存:
./gradlew clean
./gradlew --stop
rm -rf $HOME/.gradle/caches/
最佳实践建议
-
优先使用官方仓库:Google 的 Maven 仓库是最可靠的 Firebase 依赖来源。
-
避免混合使用不同来源的 Firebase SDK:要么全部使用 React Native Firebase 提供的封装,要么全部使用原生 SDK,不要混用。
-
保持依赖版本一致:定期检查并更新所有 Firebase 相关依赖到兼容版本。
-
使用 Gradle 依赖分析工具:可以通过
./gradlew dependencies命令分析依赖树,查找潜在的版本冲突。
通过以上方法,开发者可以有效解决 firebase-encoders-json 转换失败的问题,并建立更健壮的 Firebase 集成方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00