首页
/ TorchMetrics中PrecisionRecallCurve的AUROC计算问题解析

TorchMetrics中PrecisionRecallCurve的AUROC计算问题解析

2025-07-03 04:13:26作者:范垣楠Rhoda

问题背景

在机器学习模型的评估过程中,精确率-召回率曲线(Precision-Recall Curve)及其曲线下面积(AUROC)是重要的性能指标。TorchMetrics作为PyTorch生态中的指标计算库,提供了PrecisionRecallCurveBinaryAveragePrecision等指标类。然而,在使用过程中发现,当绘制带有AUROC评分的多分类精确率-召回率曲线时,计算得到的AUROC值与单独使用BinaryAveragePrecision计算的结果不一致。

问题分析

经过深入调查,发现问题的根源在于曲线计算时的排序假设。在PrecisionRecallCurve的绘图方法中,代码假设输入曲线的x值是升序排列的,但实际上对于精确率-召回率曲线,x值(召回率)是降序排列的。这种假设错误导致了AUROC计算的不准确。

此外,还发现两个指标类使用了不同的插值方法:

  1. BinaryAveragePrecision使用了一种特定的曲线插值方法
  2. PrecisionRecallCurve则使用了PyTorch的梯形法则(trapezoidal rule)进行积分

这种实现差异也会导致计算结果存在微小差别,但这是预期内的行为。

解决方案

TorchMetrics团队已经修复了这个问题,主要修改包括:

  1. 修正了绘图方法中对x值排序方向的错误假设
  2. 更新了相关文档,明确说明不同计算方法可能产生微小差异的原因
  3. 确保无论采用哪种计算方法,结果值都保持合理的一致性

修复后,对于示例数据集,各类别的指标值如下:

指标类型 类别0 类别1
BinaryAveragePrecision 0.18 0.96
MulticlassPrecisionRecallCurve 0.16 0.96

使用建议

对于TorchMetrics用户,在使用精确率-召回率相关指标时,建议注意以下几点:

  1. 不同版本间可能存在行为变化,如1.2.1和1.3.1版本间坐标轴方向有所调整
  2. 如果需要精确比较结果,应确保使用相同的方法计算
  3. 多分类曲线图的坐标轴标签问题仍需关注,建议在使用时自行添加明确标注
  4. 微小差异(如0.18 vs 0.16)属于预期范围内的计算方式差异

总结

精确率-召回率曲线及其相关指标是模型评估的重要工具。TorchMetrics通过这次修复,确保了指标计算的一致性和准确性。用户在使用时应当理解不同计算方法可能带来的微小差异,并根据具体需求选择合适的评估方式。同时,图表标注的清晰性对于结果解读也至关重要,建议在使用绘图功能时注意补充必要的标注信息。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.92 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
929
553
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8