TorchMetrics中PrecisionRecallCurve的AUROC计算问题解析
2025-07-03 18:42:03作者:范垣楠Rhoda
问题背景
在机器学习模型的评估过程中,精确率-召回率曲线(Precision-Recall Curve)及其曲线下面积(AUROC)是重要的性能指标。TorchMetrics作为PyTorch生态中的指标计算库,提供了PrecisionRecallCurve和BinaryAveragePrecision等指标类。然而,在使用过程中发现,当绘制带有AUROC评分的多分类精确率-召回率曲线时,计算得到的AUROC值与单独使用BinaryAveragePrecision计算的结果不一致。
问题分析
经过深入调查,发现问题的根源在于曲线计算时的排序假设。在PrecisionRecallCurve的绘图方法中,代码假设输入曲线的x值是升序排列的,但实际上对于精确率-召回率曲线,x值(召回率)是降序排列的。这种假设错误导致了AUROC计算的不准确。
此外,还发现两个指标类使用了不同的插值方法:
BinaryAveragePrecision使用了一种特定的曲线插值方法PrecisionRecallCurve则使用了PyTorch的梯形法则(trapezoidal rule)进行积分
这种实现差异也会导致计算结果存在微小差别,但这是预期内的行为。
解决方案
TorchMetrics团队已经修复了这个问题,主要修改包括:
- 修正了绘图方法中对x值排序方向的错误假设
- 更新了相关文档,明确说明不同计算方法可能产生微小差异的原因
- 确保无论采用哪种计算方法,结果值都保持合理的一致性
修复后,对于示例数据集,各类别的指标值如下:
| 指标类型 | 类别0 | 类别1 |
|---|---|---|
| BinaryAveragePrecision | 0.18 | 0.96 |
| MulticlassPrecisionRecallCurve | 0.16 | 0.96 |
使用建议
对于TorchMetrics用户,在使用精确率-召回率相关指标时,建议注意以下几点:
- 不同版本间可能存在行为变化,如1.2.1和1.3.1版本间坐标轴方向有所调整
- 如果需要精确比较结果,应确保使用相同的方法计算
- 多分类曲线图的坐标轴标签问题仍需关注,建议在使用时自行添加明确标注
- 微小差异(如0.18 vs 0.16)属于预期范围内的计算方式差异
总结
精确率-召回率曲线及其相关指标是模型评估的重要工具。TorchMetrics通过这次修复,确保了指标计算的一致性和准确性。用户在使用时应当理解不同计算方法可能带来的微小差异,并根据具体需求选择合适的评估方式。同时,图表标注的清晰性对于结果解读也至关重要,建议在使用绘图功能时注意补充必要的标注信息。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250