颠覆图像处理的新锐——Image Beast

在数字海洋的深处,诞生了一只名为Image Beast的强大生物!它携带一个仅1 KB的脚本(imagebeast.min.js),来帮助我们解决图像兼容性的问题。如今,新的图像格式如WebP和JpegXR带来了显著的文件体积优势,但并非所有浏览器都支持这些格式。这就是Image Beast大展身手的时候。
通过简单的将这个微型脚本引入Service Worker,并准备好相应格式的图片,Image Beast就能自动进行处理,让所有用户都能享受到最小、最轻的图像,从而实现最快的页面加载速度。
渐进增强的魔力
对于那些不支持Service Worker的老式浏览器,Image Beast也考虑到了。Service Worker是渐进增强的理想选择,如果浏览器不支持,它们会返回原始图像。反之,如果浏览器支持Service Worker,那么Image Beast就会利用其强大的功能,智能地选择最佳图像格式,无论是WebP、JPEGXR还是低分辨率图像。
立即体验
首先检查您的浏览器是否支持Service Worker,然后注册Service Worker并添加以下代码:
<script>
// Register the service worker
if ('serviceWorker' in navigator) {
navigator.serviceWorker.register('./service-worker.js')
.then((registration) => {
console.log('ServiceWorker registration successful with scope: ', registration.scope);
});
}
</script>
接着,在service-worker.js中导入脚本并启动优化:
(global => {
'use strict';
importScripts('./imagebeast.min.js');
optimize({ useWebp: false, useXr: true, useSaveData: true, useCache: true });
// Ensure that our service worker takes control of the page as soon as possible.
global.addEventListener('install', event => event.waitUntil(global.skipWaiting()));
global.addEventListener('activate', event => event.waitUntil(global.clients.claim()));
})(self);
想要立即感受效果?访问deanhume.github.io/image-beast/index.html,亲自体验一下吧!
如何工作?
Image Beast通过监听浏览器发出的HTTP请求中的客户端提示(Client Hints)来运作。例如,当你使用Google Chrome时,浏览器会在Accept请求头中发送一个客户端提示“image/webp”,告知服务器支持WebP图像。借助Service Worker,我们可以在请求响应中返回图像的不同版本。
不过你并不局限于Chrome吗?别担心,Image Beast同样适用于Microsoft Edge,一旦检测到Edge支持Service Worker,它会为你提供JPEGXR格式的图像。无论哪种图像格式,Image Beast都已经准备就绪!
性能至上
Image Beast让你能够为用户的浏览器提供最瘦身的图像。利用Service Worker,我们还可以缓存图像请求,使图像无需再次发送HTTP请求即可瞬间加载。这是默认开启的功能,但你可以通过配置选项关闭。
此外,对于启用了Android设备上数据节省功能的用户,Image Beast会返回低分辨率版本的图像。只需保存带有"-savedata"后缀的图像文件(如:beast-savedata.jpg),Image Beast就会接管余下的工作。即使没有提供低分辨率版本,它也会返回一个小巧的占位符图像,以节省用户的数据。
现在,让我们一起拥抱Image Beast,为用户提供无与伦比的图像体验吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00