AWS Deep Learning Containers发布PyTorch Graviton推理容器v1.11版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,经过优化可以直接在AWS云平台上运行。这些容器简化了深度学习环境的部署过程,使研究人员和工程师能够快速启动训练和推理任务,而无需花费大量时间配置底层环境。
近日,AWS Deep Learning Containers项目发布了PyTorch框架针对Graviton处理器优化的推理容器新版本v1.11。这个版本基于PyTorch 2.4.0构建,专门为AWS自研的Graviton处理器进行了优化,能够充分发挥ARM架构的性能优势。
核心特性
该版本容器基于Ubuntu 22.04操作系统,预装了Python 3.11环境,主要包含以下关键组件:
- PyTorch 2.4.0 + CPU版本
- TorchVision 0.19.0
- TorchAudio 2.4.0
- TorchServe 0.12.0模型服务框架
- Torch Model Archiver 0.12.0模型打包工具
除了核心的PyTorch生态系统外,容器中还预装了常用的数据科学和机器学习库,包括NumPy 1.26.4、Pandas 2.2.3、Scikit-learn 1.5.2和SciPy 1.14.1等,为开发者提供了开箱即用的机器学习环境。
技术细节
这个容器镜像针对Graviton处理器进行了深度优化,Graviton是AWS基于ARM架构自主研发的云服务器处理器,相比传统x86架构,在性价比方面具有显著优势。通过使用这个专用容器,用户可以在Graviton实例上获得更好的PyTorch推理性能。
容器中预装的PyTorch和相关库都针对ARM64架构进行了编译优化,确保能够充分利用Graviton处理器的特性。同时,容器还包含了常用的开发工具和系统库,如GCC编译工具链和标准C++库等,为开发者提供了完整的开发环境。
适用场景
这个PyTorch Graviton推理容器特别适合以下场景:
-
需要高性价比推理服务的应用:Graviton实例通常比同级别的x86实例价格更低,使用这个优化容器可以进一步降低成本。
-
边缘计算场景:ARM架构在功耗方面具有优势,适合边缘设备部署。
-
需要快速部署PyTorch模型的服务:容器预装了TorchServe,可以快速将训练好的模型部署为可扩展的推理服务。
-
开发测试环境:预装了完整的数据科学工具链,可以快速搭建开发环境。
总结
AWS Deep Learning Containers提供的这个PyTorch Graviton专用推理容器,为开发者提供了在ARM架构上运行PyTorch模型的高效解决方案。通过使用这个预构建、预优化的容器镜像,用户可以省去复杂的环境配置过程,快速部署高性能的机器学习推理服务,同时享受Graviton处理器带来的成本优势。对于已经在使用或考虑迁移到Graviton实例的用户,这个容器版本无疑是一个值得尝试的选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00