AWS Deep Learning Containers发布PyTorch Graviton推理容器v1.11版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,经过优化可以直接在AWS云平台上运行。这些容器简化了深度学习环境的部署过程,使研究人员和工程师能够快速启动训练和推理任务,而无需花费大量时间配置底层环境。
近日,AWS Deep Learning Containers项目发布了PyTorch框架针对Graviton处理器优化的推理容器新版本v1.11。这个版本基于PyTorch 2.4.0构建,专门为AWS自研的Graviton处理器进行了优化,能够充分发挥ARM架构的性能优势。
核心特性
该版本容器基于Ubuntu 22.04操作系统,预装了Python 3.11环境,主要包含以下关键组件:
- PyTorch 2.4.0 + CPU版本
- TorchVision 0.19.0
- TorchAudio 2.4.0
- TorchServe 0.12.0模型服务框架
- Torch Model Archiver 0.12.0模型打包工具
除了核心的PyTorch生态系统外,容器中还预装了常用的数据科学和机器学习库,包括NumPy 1.26.4、Pandas 2.2.3、Scikit-learn 1.5.2和SciPy 1.14.1等,为开发者提供了开箱即用的机器学习环境。
技术细节
这个容器镜像针对Graviton处理器进行了深度优化,Graviton是AWS基于ARM架构自主研发的云服务器处理器,相比传统x86架构,在性价比方面具有显著优势。通过使用这个专用容器,用户可以在Graviton实例上获得更好的PyTorch推理性能。
容器中预装的PyTorch和相关库都针对ARM64架构进行了编译优化,确保能够充分利用Graviton处理器的特性。同时,容器还包含了常用的开发工具和系统库,如GCC编译工具链和标准C++库等,为开发者提供了完整的开发环境。
适用场景
这个PyTorch Graviton推理容器特别适合以下场景:
-
需要高性价比推理服务的应用:Graviton实例通常比同级别的x86实例价格更低,使用这个优化容器可以进一步降低成本。
-
边缘计算场景:ARM架构在功耗方面具有优势,适合边缘设备部署。
-
需要快速部署PyTorch模型的服务:容器预装了TorchServe,可以快速将训练好的模型部署为可扩展的推理服务。
-
开发测试环境:预装了完整的数据科学工具链,可以快速搭建开发环境。
总结
AWS Deep Learning Containers提供的这个PyTorch Graviton专用推理容器,为开发者提供了在ARM架构上运行PyTorch模型的高效解决方案。通过使用这个预构建、预优化的容器镜像,用户可以省去复杂的环境配置过程,快速部署高性能的机器学习推理服务,同时享受Graviton处理器带来的成本优势。对于已经在使用或考虑迁移到Graviton实例的用户,这个容器版本无疑是一个值得尝试的选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C079
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00