AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像已经过优化,可在AWS云环境中高效运行。DLC包含了主流深度学习框架的最新版本,并预先安装了必要的依赖项和工具,使数据科学家和开发人员能够快速部署深度学习工作负载,而无需花费大量时间在环境配置上。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.5.1推理专用镜像的两个新版本,分别针对CPU和GPU计算环境进行了优化。这两个镜像都基于Ubuntu 22.04操作系统,并预装了Python 3.11环境,专为EC2实例部署设计。
CPU优化版本镜像特性
CPU版本的PyTorch 2.5.1推理镜像(2.5.1-cpu-py311-ubuntu22.04-ec2)主要特点包括:
-
核心框架:预装了PyTorch 2.5.1 CPU版本,配套的torchaudio 2.5.1和torchvision 0.20.1,这些组件都针对CPU计算进行了优化。
-
工具链支持:包含了模型服务工具torchserve 0.12.0和模型归档工具torch-model-archiver 0.12.0,方便用户部署和管理PyTorch模型。
-
科学计算库:预装了NumPy 2.1.3和SciPy 1.14.1等科学计算基础库,以及OpenCV 4.10.0用于计算机视觉任务。
-
开发工具:包含了Emacs编辑器及其相关组件,方便开发人员在容器内直接进行代码编辑。
-
系统依赖:基于Ubuntu 22.04,使用GCC 11作为基础编译器工具链,确保良好的兼容性和性能。
GPU加速版本镜像特性
GPU版本的PyTorch 2.5.1推理镜像(2.5.1-gpu-py311-cu124-ubuntu22.04-ec2)在CPU版本基础上增加了对NVIDIA GPU的支持:
-
CUDA支持:基于CUDA 12.4工具包,包含cuBLAS 12.4和cuDNN 9等GPU加速库,充分发挥NVIDIA显卡的计算能力。
-
GPU优化框架:PyTorch 2.5.1、torchaudio 2.5.1和torchvision 0.20.1都针对CUDA 12.4进行了编译优化。
-
并行计算支持:预装了mpi4py 4.0.1,支持基于MPI的分布式计算模式。
-
数据处理增强:额外包含了pandas 2.2.3库,方便处理结构化数据。
版本兼容性与标签策略
AWS DLC采用了灵活的标签策略,既包含精确版本号(如2.5.1)的标签,也提供主版本号(如2.5)的通用标签。这种策略既满足了需要固定特定版本的生产环境需求,也为希望自动获取小版本更新的用户提供了便利。
对于需要长期稳定运行的环境,建议使用包含完整版本号的标签(如2.5.1-cpu-py311-ubuntu22.04-ec2-v1.20),而对于开发和测试环境,可以使用主版本标签(如2.5-cpu-py311-ec2)以自动获取该主版本下的最新更新。
使用建议
-
模型部署:这些镜像特别适合部署已经训练好的PyTorch模型,利用torchserve可以快速构建模型服务API。
-
性能调优:对于计算密集型任务,建议使用GPU版本镜像,并确保EC2实例配备了兼容的NVIDIA显卡。
-
开发环境:镜像中预装的工具链使其也适合作为开发环境使用,特别是需要进行模型调试和优化的场景。
-
安全更新:虽然Ubuntu 22.04是一个长期支持版本,但仍建议定期检查并应用安全更新。
AWS Deep Learning Containers的这些新版本PyTorch推理镜像,为机器学习工程师提供了开箱即用的高效部署环境,显著降低了从模型开发到生产部署的复杂度。用户可以根据自己的计算需求选择适合的版本,快速构建可靠的推理服务。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00