optimeyes 的安装和配置教程
2025-05-28 13:32:27作者:凌朦慧Richard
1. 项目的基础介绍和主要的编程语言
optimeyes 是一个基于 Python 和 OpenCV 的开源项目,主要用于实现通过普通摄像头进行眼瞳跟踪和视线估计的功能。该项目是一个演示性的概念验证,并非一个生产级别的库,但其创新的方法和算法吸引了开发者的关注。主要使用的编程语言是 Python。
2. 项目使用的关键技术和框架
本项目使用的关键技术包括:
- OpenCV:一个开源的计算机视觉库,用于实时图像处理和计算机视觉。
- 虚拟参考点:通过多个不可靠的关键点推导出一个非常可靠的面部参考点。
- 眼瞳概率图叠加:将一只眼睛的瞳孔概率图叠加到另一只眼睛上,以提高估计的准确性。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Windows 或 Linux
- Python 环境:Python 3.x
- 开发工具:安装有 CMake 和 GCC 的开发环境
安装步骤
步骤 1:安装 Python 和 pip
确保您的系统中已经安装了 Python 和 pip。在终端(Linux)或命令提示符(Windows)中,可以运行以下命令来验证安装:
python --version
pip --version
步骤 2:安装依赖库
在终端中执行以下命令,安装项目所需的 Python 库:
pip install -r requirements.txt
步骤 3:安装 OpenCV
optimeyes 需要安装具有 contrib 非自由模块的 OpenCV。以下是分别在 Windows 和 Linux 系统中的安装步骤。
Windows:
-
克隆 OpenCV 存储库:
git clone --recursive https://github.com/opencv/opencv-python.git -
切换到克隆的目录并设置环境变量:
cd opencv-python SET CMAKE_ARGS="-DOPENCV_ENABLE_NONFREE=ON" SET ENABLE_CONTRIB=1 -
构建并安装:
python setup.py bdist_wheel pip install dist\opencv_contrib_python-x.x.x.x.whl注意:将 wheel 文件名更改为您在 dist 文件夹中构建的 wheel。
Linux:
-
安装依赖项:
apt-get update apt-get install -y --no-install-recommends build-essential python-dev cmake git pkg-config \ libjpeg8-dev libjasper-dev libpng12-dev libgtk2.0-dev libavcodec-dev libavformat-dev \ libswscale-dev libv4l-dev libatlas-base-dev gfortran -
克隆 OpenCV 存储库并设置环境变量:
git clone --recursive https://github.com/opencv/opencv-python.git cd opencv-python export CMAKE_ARGS="-DOPENCV_ENABLE_NONFREE=ON" export ENABLE_CONTRIB=1 -
构建并安装:
python setup.py bdist_wheel pip install dist/opencv_contrib_python-x.x.x.x.whl注意:将 wheel 文件名更改为您在 dist 文件夹中构建的 wheel。
步骤 4:运行项目
完成上述步骤后,您可以运行项目的主程序:
python eyeDetect.py
在第一次运行时,请确保 eyeDetect.py 文件顶部的 doTraining 变量为 False。这样,程序会以图形方式显示瞳孔中心。当瞳孔跟踪看起来良好时,您可以设置 doTraining 为 True 并再次运行程序,以开始视线检测的训练。
以上就是 optimeyes 的安装和配置教程,希望对您有所帮助。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328