Mockery项目中如何优雅地模拟"永不调用"的方法
2025-06-02 20:21:06作者:齐冠琰
在Go语言的单元测试中,我们经常会遇到需要模拟某些方法"永远不应该被调用"的场景。本文将深入探讨在Mockery项目中如何优雅地实现这一需求,并分析各种实现方式的优缺点。
问题背景
在编写单元测试时,有时我们需要确保被测代码在特定条件下不会调用某些方法。例如,当测试一个条件分支时,我们希望验证在某个分支下不会调用特定的依赖方法。这种情况下,我们需要一种方式来明确表达"这个方法永远不应该被调用"的预期。
常见解决方案
1. 使用panic的原始方式
最初开发者可能会采用以下方式:
mock.On("SomeFunc", ctx).
Run(func(args mock.Arguments) {
panic("should not be called!")
}).
Return(nil, errors.New("panic")).
Maybe()
这种方式虽然能达到目的,但存在几个问题:
- 代码冗长且不够直观
- 使用了panic,可能会影响测试框架的错误报告
- 需要额外处理返回值,即使这些返回值实际上不会被使用
2. 更优雅的解决方案:Times(0)
Mockery实际上已经提供了更优雅的解决方案:
mock.On("SomeFunc", ctx).Times(0)
这种方式:
- 语义明确,直接表达了"这个方法不应该被调用"的意图
- 不需要处理panic或返回值
- 当方法被意外调用时,Mockery会自动报告测试失败
3. 不设置预期的隐式方式
另一种方式是根本不设置对该方法的任何预期:
// 不设置SomeFunc的任何mock预期
然后依赖Mockery的AssertExpectations()功能,它会在测试结束时自动检查是否有未预期的调用发生。这种方式:
- 最简单直接
- 适用于不关心具体参数的情况
- 错误报告可能不够具体
最佳实践建议
-
参数明确时:使用
Times(0)方式,因为它既能明确表达意图,又能在错误发生时提供详细的错误信息。 -
不关心参数时:可以不设置预期,依赖
AssertExpectations()来捕获意外调用。 -
避免使用panic:除非有特殊需求,否则应该避免在测试中使用panic来验证调用情况。
深入理解Times(0)的工作原理
Mockery的Times(0)实际上是设置了一个预期计数器,当方法被调用时,这个计数器会递增。在测试验证阶段,Mockery会检查所有预期调用的实际调用次数是否符合预期。对于Times(0)的情况,任何调用都会导致验证失败。
实际应用示例
假设我们有一个缓存服务,在缓存命中时不应该调用底层数据库:
func TestCacheHit(t *testing.T) {
dbMock := new(DatabaseMock)
cache := NewCacheService(dbMock)
// 设置缓存命中的测试数据
cache.Set("key", "value")
// 明确表示GetFromDB不应该被调用
dbMock.On("GetFromDB", "key").Times(0)
// 执行测试
result, err := cache.Get("key")
require.NoError(t, err)
require.Equal(t, "value", result)
// 自动验证mock预期
dbMock.AssertExpectations(t)
}
总结
在Mockery项目中,验证方法"永不调用"的最佳方式是使用Times(0)。这种方式简洁、明确,并且能提供良好的错误报告。理解并正确使用这一特性,可以大大提高单元测试的可读性和可维护性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.89 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1