Gaussian Splatting项目中3D协方差矩阵的计算原理分析
2025-05-13 05:55:34作者:宣利权Counsellor
引言
在Gaussian Splatting项目的CUDA实现中,3D高斯分布的协方差矩阵计算采用了与论文公式略有不同的实现方式。本文将深入剖析其数学原理,解释为何两种形式在本质上是等价的。
理论基础
3D高斯分布的协方差矩阵Σ表征了点在空间中的分布特性。根据论文公式(6),协方差矩阵应表示为:
Σ = R * S * S^T * R^T
其中:
- R为旋转矩阵(正交矩阵,满足R^-1 = R^T)
- S为对角缩放矩阵(满足S = S^T)
实现差异解析
在CUDA实现中(cuda_rasterizer/forward.cu),代码采用了以下计算方式:
glm::mat3 M = S * R;
glm::mat3 Sigma = glm::transpose(M) * M;
数学等价性证明
-
矩阵展开:
- M = S * R
- M^T = R^T * S^T = R^T * S (因S对称)
-
乘积运算:
Sigma = M^T * M = (R^T * S) * (S * R) = R^T * S * S * R -
与论文公式关系:
- 当实现中的R表示论文中R的逆矩阵时(即R_impl = R_paper^-1)
- 利用旋转矩阵性质:R^T = R^-1
- 因此两种表示完全等价
实现选择的原因
项目采用这种实现方式主要基于两个工程考量:
- 计算效率:合并缩放和旋转为单一矩阵乘法,减少运算步骤
- 数值稳定性:避免显式计算矩阵转置,利用GLM库的优化特性
关键理解要点
- 缩放矩阵S的对角特性保证了S = S^T
- 旋转矩阵的正交性是其逆等于转置的核心
- 实现中的旋转矩阵方向与论文定义相反,但不影响最终结果
总结
Gaussian Splatting项目通过巧妙的矩阵运算重组,在保持数学正确性的同时优化了计算流程。这种实现方式充分体现了计算机图形学中理论严谨性与工程实践性的完美结合,对于理解3D高斯分布的可视化实现具有重要参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19