探秘跨类型生物医学实体识别:深度多任务学习的魅力
2024-06-19 18:19:14作者:凤尚柏Louis
在生物医学领域,从海量的文献中自动提取出基因、蛋白质、疾病等关键实体是一项至关重要的任务。这就是我们今天要推荐的开源项目——Cross-type Biomedical Named Entity Recognition with Deep Multi-Task Learning,一个基于PyTorch构建的强大工具。
项目介绍
该项目提供了一个创新的深度多任务学习模型,旨在同时训练多种类型的生物医学实体,以提升单一实体类型的识别效果。它不仅集成了预训练词嵌入,而且在多个权威数据集上展现出卓越的表现,超越了现有的一些最佳系统。
项目技术分析
该模型基于PyTorch库,利用长短期记忆网络(LSTM)和条件随机场(CRF),并通过多任务学习的方式进行训练。这种设计允许模型共享底层特征表示,从而提高了不同实体类型之间的协同学习。此外,它还支持预处理的词向量,这有助于捕捉文本中的语义信息。
应用场景
此项目对于生物医学文本挖掘、临床决策支持以及药物研发等领域具有广泛的应用价值。通过自动识别和分类生物医学实体,研究人员可以更快速地获取关键信息,加速科研进程。例如,在新药发现中,识别化学物质与疾病的关系可帮助科学家定位潜在的治疗靶点。
项目特点
- 高效性能:通过多任务学习,模型在多个标准数据集上的F1分数均优于现有方法。
- 易用性:提供详细的安装指南和运行示例,便于用户快速上手。
- 灵活性:用户可自定义训练和验证数据集,也可使用预训练模型对新的文本进行标注。
- 广泛适用:支持多种类型的生物医学实体识别,适应性强。
如果你正在寻找一个能够在生物医学领域实现高精度实体识别的工具,这个项目无疑是你的理想选择。立即参与,开启你的智能文本挖掘之旅!
# 体验项目
git clone https://github.com/xuanwang98/Cross-Type-Biomedical-Named-Entity-Recognition.git
cd Cross-Type-Biomedical-Named-Entity-Recognition
pip3 install -r requirements.txt
./run_lm-lstm-crf5.sh
请确保你在引用本项目时,引用以下论文:
@article{wang2018cross,
title={Cross-type biomedical named entity recognition with deep multi-task learning},
author={Wang, Xuan and Zhang, Yu and Ren, Xiang and Zhang, Yuhao and Zitnik, Marinka and Shang, Jingbo and Langlotz, Curtis and Han, Jiawei},
journal={Bioinformatics},
volume={35},
number={10},
pages={1745--1752},
year={2019},
publisher={Oxford University Press}
}
让我们一起探索深度学习在生物医学领域的无限可能!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248