link-prediction 项目亮点解析
2025-05-23 19:40:14作者:郜逊炳
一、项目基础介绍
link-prediction 是一个针对社交网络中进行链接预测的机器学习实验项目。该项目通过实现和应用多种链接预测方法,对 SNAP Facebook 数据集、SNAP Twitter 数据集以及使用 networkx 生成的随机网络进行分析,并计算比较了各种方法的 ROC AUC、平均精度和运行时间。项目旨在探索社交网络中的链接预测技术,并提供了丰富的实验结果和代码实现。
二、项目代码目录及介绍
项目的代码目录结构清晰,主要包括以下几个部分:
facebook/:原始的 Facebook 自我网络数据集,包含添加的.allfeats文件(包含自我和他人特征)。fb-processed/:每个自我网络的邻接矩阵和特征矩阵的 pickle 复制,以及组合网络的 pickle 复制。twitter/:Twitter 自我网络数据集(组合),包含邻接矩阵的 pickle 复制。visualizations/:使用networkx和matplotlib生成的每个网络的可视化。network-statistics/:每个网络的预计算网络特征文件(包含连通性、网络大小等信息)。train-test-splits/:每个 Facebook 自我网络的预处理训练测试分割的 pickle 复制。process-ego-networks.py:用于处理原始 Facebook 数据并生成 pickle 复制的脚本。process-combined-network.py:用于组合 Facebook 自我网络并生成完整网络 pickle 复制的脚本。process-twitter-network.py:用于处理原始 Twitter 数据并生成 pickle 复制的脚本。fb-train-test-splits.py:用于生成和存储每个 Facebook 自我网络的训练测试分割的脚本。twitter-train-test-splits.py:用于生成和存储 Twitter 组合网络的训练测试分割的脚本。
三、项目亮点功能拆解
项目的亮点功能包括:
- 实现了多种链接预测方法,如图自动编码器、Node2Vec/DeepWalk、谱聚类等。
- 提供了基线索引方法,如 Adamic/Adar、Jaccard 系数、优先连接等。
- 生成了丰富的网络可视化和网络统计信息。
- 提供了预处理和训练测试分割的脚本,方便用户进行自己的实验。
- 包含了注解的 IPython 笔记本,详细展示了链接预测方法的实现和应用。
四、项目主要技术亮点拆解
项目的主要技术亮点包括:
- 使用了先进的机器学习方法,如变分图自动编码器,来学习图上的节点嵌入。
- 利用 Node2Vec 等方法进行节点和边的嵌入学习,为链接预测提供更准确的表示。
- 通过谱聚类方法,利用谱嵌入来创建节点表示。
- 提供了性能评估指标,如 ROC AUC 和平均精度,以评估不同方法的预测效果。
五、与同类项目对比的亮点
相比于其他同类项目,link-prediction 的亮点在于:
- 提供了丰富的数据集处理和预处理脚本,降低了用户进行实验的门槛。
- 包含了多种链接预测方法的实现,用户可以方便地比较不同方法的效果。
- 实验结果全面,包含了不同网络类型和不同方法的性能对比,有助于研究人员深入理解链接预测技术的应用。
- 代码结构清晰,文档齐全,便于用户理解和复现实验结果。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178