Azure AI旅行代理项目实战指南:构建智能多代理系统
2025-06-07 18:17:34作者:伍希望
项目概述
Azure AI旅行代理是一个基于Azure AI Foundry服务和LlamaIndex.TS构建的智能多代理系统示范项目。该项目展示了如何利用现代AI技术构建复杂的旅行规划系统,其中包含多个协同工作的智能代理,每个代理负责不同的功能模块。
技术架构解析
该项目的核心架构包含以下关键技术组件:
- 多代理系统架构:采用分布式设计模式,各代理通过标准协议进行通信
- Azure AI Foundry服务:提供基础的AI能力支撑
- LlamaIndex.TS:用于构建高效的索引和检索系统
- Model Context Protocol (MCP):实现跨语言的服务交互协议
环境准备
在开始项目前,请确保您的开发环境满足以下要求:
基础工具链
- Azure Developer CLI (最新稳定版)
- Docker (v4.41.2或更高版本)
- Node.js (LTS版本)
- PowerShell 7+ (仅Windows用户需要)
环境验证
Windows用户需特别验证PowerShell 7+是否正常工作,在终端中执行pwsh.exe命令应能正常启动PowerShell 7环境。
本地开发环境搭建
1. 获取项目代码
建议使用HTTPS方式获取项目代码,确保网络环境稳定。
2. 初始化项目
cd azure-ai-travel-agents
azd auth login
对于GitHub Codespaces用户,如遇认证问题可尝试:
azd auth login --use-device-code
3. 资源预配
执行资源预配命令:
azd provision
注意:资源组命名需符合Azure命名规范,区域选择可能影响资源可用性。
4. 服务启动
分别启动API和UI服务:
npm start --prefix=src/api
npm start --prefix=src/ui
5. 访问服务
- UI界面:http://localhost:4200
- 监控面板:http://localhost:18888
云端部署指南
部署流程
- 执行部署命令:
azd up
- 选择资源部署区域(默认为瑞典中部)
- 等待部署完成,获取应用访问URL
部署注意事项
- OpenAI资源默认部署在瑞典中部区域
- 可通过环境变量修改部署区域:
azd env set AZURE_LOCATION <目标区域>
成本优化建议
项目涉及的Azure服务成本主要来自:
- Azure Container Apps:前200万次执行免费
- Azure Container Registry:前2GB存储免费
- Azure OpenAI:按令牌使用量计费
- Azure Monitor:前5GB数据免费
建议策略:
- 开发测试阶段使用免费配额
- 长期不用时执行清理命令:
azd down --purge
高级配置选项
对于需要深度定制的开发者,可探索:
- 本地LLM提供程序配置
- 服务细粒度调优
- 自定义部署策略
- 性能监控与优化
常见问题解决
若遇到启动问题,可尝试强制运行后置钩子:
azd hooks run postprovision
开发建议
- 使用VS Code Dev Containers保持环境一致性
- 充分利用Aspire Dashboard进行服务监控
- 定期检查Azure资源使用情况
- 关注OpenAI模型可用性变化
最佳实践
- 资源管理:为不同环境创建独立资源组
- 配置管理:使用环境变量存储敏感信息
- 性能优化:合理设置容器资源限制
- 安全防护:定期轮换访问凭证
通过本指南,开发者可以快速上手Azure AI旅行代理项目,构建自己的智能多代理系统。项目展示了现代云原生AI应用的全生命周期管理,从本地开发到云端部署,为构建复杂AI系统提供了完整参考实现。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210