Scramble项目中自定义过滤器的OpenAPI规范生成问题解析
问题背景
在使用Laravel的Spatie QueryBuilder结合Scramble生成OpenAPI规范时,开发者可能会遇到一个特殊问题:当使用AllowedFilter::custom()方法定义自定义过滤器时,生成的OpenAPI规范中会出现重复的参数定义。具体表现为一个过滤器会生成两个不同的参数格式,这可能导致API文档的混乱和客户端调用的困惑。
问题现象
在正常情况下,使用AllowedFilter::custom()方法应该生成类似以下的OpenAPI参数定义:
"parameters": [
{
"name": "filter[accountable]",
"in": "query",
"schema": {
"type": "string"
}
}
]
然而在某些情况下,特别是当结合使用表单请求验证时,可能会生成如下重复的参数定义:
"parameters": [
{
"name": "filter[accountable]",
"in": "query",
"schema": {
"type": "string"
}
},
{
"name": "filter",
"in": "query",
"schema": {
"type": "object",
"properties": {
"accountable": {
"type": "string"
}
}
}
}
]
问题原因分析
经过深入调查,这个问题主要出现在以下场景中:
- 当控制器方法同时使用了
QueryBuilder的AllowedFilter::custom()方法 - 并且使用了自定义的
FormRequest类来定义请求验证规则 - 在验证规则中使用了点符号(
.)来定义过滤器参数验证(如filter.accountable)
Scramble在解析时会同时从QueryBuilder和表单请求中提取参数信息,导致参数重复定义。QueryBuilder倾向于生成filter[param]格式的参数,而表单请求验证规则则倾向于生成嵌套对象格式的参数。
解决方案
目前有以下几种解决方式:
1. 使用@ignoreParam注解
在控制器方法上添加PHPDoc注释,忽略特定的参数:
/**
* @ignoreParam filter
*/
public function __invoke(GetAccountsRequest $request)
{
// 方法实现
}
这种方式可以明确告诉Scramble忽略特定格式的参数生成。
2. 统一参数定义格式
确保在表单请求验证规则中使用与QueryBuilder一致的参数命名格式:
public function rules()
{
return [
'filter[accountable]' => [ // 使用方括号而非点符号
'string',
'regex:/:{1}/',
'not_regex:/:{2,}/',
],
];
}
3. 等待官方修复
根据项目维护者的反馈,这是一个已知问题,未来版本可能会提供更优雅的解决方案。开发者可以关注项目更新。
最佳实践建议
为了避免此类问题,建议开发者在设计API时:
- 保持参数命名风格一致,要么全部使用点符号,要么全部使用方括号
- 优先考虑使用QueryBuilder的原生参数定义方式
- 对于复杂的验证逻辑,考虑在控制器中手动验证而非完全依赖表单请求
- 定期检查生成的OpenAPI文档,确保其符合预期
技术深度解析
从技术实现角度看,这个问题反映了API文档生成工具在处理不同来源的参数定义时的挑战。Scramble需要同时考虑:
- QueryBuilder的过滤器定义
- Laravel表单请求的验证规则
- 路由参数定义
- 控制器方法参数
当这些来源对同一参数有不同的表示方式时,工具需要更智能的合并策略或提供明确的覆盖规则。目前看来,Scramble在这方面的处理还有优化空间。
总结
Scramble作为Laravel API文档生成工具,在大多数情况下工作良好,但在处理自定义过滤器和表单请求验证的交叉场景时可能会出现参数重复定义的问题。开发者可以通过上述解决方案临时应对,同时期待未来版本提供更完善的参数合并策略。理解这一问题的根源有助于开发者更好地设计API参数和验证规则,避免文档生成时的意外行为。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00