RaspberryMatic项目中解决CUL868和CC2531设备端口切换问题
2025-07-10 19:17:24作者:曹令琨Iris
在智能家居系统中,RaspberryMatic作为家庭自动化控制中心,经常需要同时连接多种USB设备。本文将详细介绍如何解决CUL868和CC2531两种USB设备在系统重启后端口号随机切换的问题。
问题背景
当系统中同时连接CUL868和CC2531两种USB设备时,Linux内核可能会在每次启动时为它们分配不同的ttyACM设备号。这种不确定性会导致以下问题:
- CUxD服务可能无法正确识别目标设备
- Node-RED中的Zigbee通信会中断
- 需要手动重新插拔设备或重启服务
技术原理
Linux系统通过udev服务管理设备节点。默认情况下,USB串行设备会按照检测顺序被分配ttyACM0、ttyACM1等设备号。由于设备初始化顺序的不确定性,导致每次启动时设备号可能互换。
解决方案
永久性解决方案:自定义udev规则
最可靠的解决方案是创建自定义udev规则,为每个设备分配固定的设备名称:
- 创建udev规则目录:
mkdir -p /usr/local/lib/udev/rules.d
- 创建规则文件(如99-usb-serial.rules),内容如下:
# CUL868设备规则
ATTRS{idVendor}=="03eb", ATTRS{idProduct}=="204b", RUN+="modprobe cdc_acm", SYMLINK+="ttyACMCUL868"
# CC2531设备规则
ATTRS{idVendor}=="0451", ATTRS{idProduct}=="16a8", RUN+="modprobe cdc_acm", SYMLINK+="ttyACMCC2531"
- 重新加载udev规则:
udevadm control --reload-rules
配置调整
完成上述步骤后,需要在相关服务中更新设备路径:
-
CUxD配置: 修改TTYASSIGN参数,使用固定设备名:
TTYASSIGN=ttyACMCC2531:NC -
Node-RED配置: 将Zigbee设备路径从/dev/ttyACM1改为/dev/ttyACMCC2531
验证步骤
- 重启系统
- 检查设备链接是否创建:
ls -l /dev/ttyACM* - 确认CUxD服务状态:
cuxdstatus
注意事项
- 确保规则文件权限为644
- 规则文件名应以数字开头,确保加载顺序
- 修改后建议重启系统以确保所有服务正确识别新设备路径
通过这种方案,系统将始终为特定设备分配固定的设备名称,彻底解决设备端口随机切换的问题,提高系统稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493