Ragas项目中异步评估指标的正确使用方法
2025-05-26 09:58:46作者:贡沫苏Truman
在Ragas项目中,开发者经常会使用LLM(大型语言模型)来构建各种评估指标。近期有用户反馈在使用AspectCritic指标时遇到了异步调用的问题,本文将深入分析这一问题并提供解决方案。
问题背景
Ragas是一个用于评估AI生成内容质量的框架,其中AspectCritic类允许用户创建自定义的评估指标。当用户尝试使用single_turn_score方法时,可能会遇到两种调用方式:
- 直接同步调用:
metric.single_turnscore(test_data) - 异步调用:
await metric.single_turn_score(test_data)
第一种方式可以正常工作,而第二种方式则会产生语法错误"await outside function"。
技术分析
这个问题本质上不是Ragas框架的bug,而是Python异步编程的基本规则。在Python中,await关键字只能在异步函数(async def)内部使用。当开发者尝试在全局作用域或普通函数中直接使用await时,解释器会抛出语法错误。
Ragas框架的single_turn_score方法设计为异步方法,这是为了:
- 更好地处理与LLM的交互,这些交互通常是I/O密集型的
- 提高资源利用率,允许在等待LLM响应时执行其他任务
- 与现代异步Web框架更好地集成
解决方案
要正确使用异步评估方法,开发者需要将调用代码包裹在异步上下文中。以下是几种正确的使用方式:
1. 在异步函数中使用
async def evaluate():
metric = AspectCritic(
name="summary_accuracy",
llm=evaluator_llm,
definition="Verify if the summary is accurate.",
)
test_data = SingleTurnSample(**test_data)
score = await metric.single_turn_score(test_data)
return score
2. 使用asyncio.run运行异步代码
import asyncio
def main():
metric = AspectCritic(
name="summary_accuracy",
llm=evaluator_llm,
definition="Verify if the summary is accurate.",
)
test_data = SingleTurnSample(**test_data)
score = asyncio.run(metric.single_turn_score(test_data))
print(score)
3. 在Jupyter notebook中使用
Jupyter notebook原生支持异步执行,可以直接在cell中使用await:
score = await metric.single_turn_score(test_data)
最佳实践建议
- 统一代码风格:如果项目主要使用异步编程,建议将所有相关函数都定义为异步函数
- 错误处理:异步调用时不要忘记添加try-except块处理可能的异常
- 性能考虑:对于批量评估,考虑使用asyncio.gather并行执行多个评估任务
- 文档检查:使用前仔细阅读框架文档,了解每个方法是同步还是异步的
总结
Ragas框架采用异步设计是为了更好地处理与LLM的交互,提高评估效率。开发者在使用时需要遵循Python的异步编程规范,将await调用放在适当的异步上下文中。理解这一点后,就能充分利用Ragas提供的异步评估能力,构建高效的AI内容评估流程。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137