Ragas项目中异步评估指标的正确使用方法
2025-05-26 12:48:57作者:贡沫苏Truman
在Ragas项目中,开发者经常会使用LLM(大型语言模型)来构建各种评估指标。近期有用户反馈在使用AspectCritic指标时遇到了异步调用的问题,本文将深入分析这一问题并提供解决方案。
问题背景
Ragas是一个用于评估AI生成内容质量的框架,其中AspectCritic类允许用户创建自定义的评估指标。当用户尝试使用single_turn_score方法时,可能会遇到两种调用方式:
- 直接同步调用:
metric.single_turnscore(test_data) - 异步调用:
await metric.single_turn_score(test_data)
第一种方式可以正常工作,而第二种方式则会产生语法错误"await outside function"。
技术分析
这个问题本质上不是Ragas框架的bug,而是Python异步编程的基本规则。在Python中,await关键字只能在异步函数(async def)内部使用。当开发者尝试在全局作用域或普通函数中直接使用await时,解释器会抛出语法错误。
Ragas框架的single_turn_score方法设计为异步方法,这是为了:
- 更好地处理与LLM的交互,这些交互通常是I/O密集型的
- 提高资源利用率,允许在等待LLM响应时执行其他任务
- 与现代异步Web框架更好地集成
解决方案
要正确使用异步评估方法,开发者需要将调用代码包裹在异步上下文中。以下是几种正确的使用方式:
1. 在异步函数中使用
async def evaluate():
metric = AspectCritic(
name="summary_accuracy",
llm=evaluator_llm,
definition="Verify if the summary is accurate.",
)
test_data = SingleTurnSample(**test_data)
score = await metric.single_turn_score(test_data)
return score
2. 使用asyncio.run运行异步代码
import asyncio
def main():
metric = AspectCritic(
name="summary_accuracy",
llm=evaluator_llm,
definition="Verify if the summary is accurate.",
)
test_data = SingleTurnSample(**test_data)
score = asyncio.run(metric.single_turn_score(test_data))
print(score)
3. 在Jupyter notebook中使用
Jupyter notebook原生支持异步执行,可以直接在cell中使用await:
score = await metric.single_turn_score(test_data)
最佳实践建议
- 统一代码风格:如果项目主要使用异步编程,建议将所有相关函数都定义为异步函数
- 错误处理:异步调用时不要忘记添加try-except块处理可能的异常
- 性能考虑:对于批量评估,考虑使用asyncio.gather并行执行多个评估任务
- 文档检查:使用前仔细阅读框架文档,了解每个方法是同步还是异步的
总结
Ragas框架采用异步设计是为了更好地处理与LLM的交互,提高评估效率。开发者在使用时需要遵循Python的异步编程规范,将await调用放在适当的异步上下文中。理解这一点后,就能充分利用Ragas提供的异步评估能力,构建高效的AI内容评估流程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895