Ragas项目中异步评估指标的正确使用方法
2025-05-26 00:06:15作者:贡沫苏Truman
在Ragas项目中,开发者经常会使用LLM(大型语言模型)来构建各种评估指标。近期有用户反馈在使用AspectCritic指标时遇到了异步调用的问题,本文将深入分析这一问题并提供解决方案。
问题背景
Ragas是一个用于评估AI生成内容质量的框架,其中AspectCritic类允许用户创建自定义的评估指标。当用户尝试使用single_turn_score方法时,可能会遇到两种调用方式:
- 直接同步调用:
metric.single_turnscore(test_data) - 异步调用:
await metric.single_turn_score(test_data)
第一种方式可以正常工作,而第二种方式则会产生语法错误"await outside function"。
技术分析
这个问题本质上不是Ragas框架的bug,而是Python异步编程的基本规则。在Python中,await关键字只能在异步函数(async def)内部使用。当开发者尝试在全局作用域或普通函数中直接使用await时,解释器会抛出语法错误。
Ragas框架的single_turn_score方法设计为异步方法,这是为了:
- 更好地处理与LLM的交互,这些交互通常是I/O密集型的
- 提高资源利用率,允许在等待LLM响应时执行其他任务
- 与现代异步Web框架更好地集成
解决方案
要正确使用异步评估方法,开发者需要将调用代码包裹在异步上下文中。以下是几种正确的使用方式:
1. 在异步函数中使用
async def evaluate():
metric = AspectCritic(
name="summary_accuracy",
llm=evaluator_llm,
definition="Verify if the summary is accurate.",
)
test_data = SingleTurnSample(**test_data)
score = await metric.single_turn_score(test_data)
return score
2. 使用asyncio.run运行异步代码
import asyncio
def main():
metric = AspectCritic(
name="summary_accuracy",
llm=evaluator_llm,
definition="Verify if the summary is accurate.",
)
test_data = SingleTurnSample(**test_data)
score = asyncio.run(metric.single_turn_score(test_data))
print(score)
3. 在Jupyter notebook中使用
Jupyter notebook原生支持异步执行,可以直接在cell中使用await:
score = await metric.single_turn_score(test_data)
最佳实践建议
- 统一代码风格:如果项目主要使用异步编程,建议将所有相关函数都定义为异步函数
- 错误处理:异步调用时不要忘记添加try-except块处理可能的异常
- 性能考虑:对于批量评估,考虑使用asyncio.gather并行执行多个评估任务
- 文档检查:使用前仔细阅读框架文档,了解每个方法是同步还是异步的
总结
Ragas框架采用异步设计是为了更好地处理与LLM的交互,提高评估效率。开发者在使用时需要遵循Python的异步编程规范,将await调用放在适当的异步上下文中。理解这一点后,就能充分利用Ragas提供的异步评估能力,构建高效的AI内容评估流程。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19