基于CUTLASSS的Gather/Scatter与分组GEMM融合技术解析
2025-05-31 04:31:10作者:卓艾滢Kingsley
背景介绍
在深度学习模型训练过程中,经常会遇到需要处理特殊形状网络层的情况。这些网络层往往需要进行大量的数据收集(Gather)和分散(Scatter)操作,特别是在处理小型且不规则形状的矩阵时。本文将以NVIDIA CUTLASS库为基础,探讨如何高效实现Gather/Scatter操作与分组GEMM(矩阵乘法)的融合技术。
技术挑战
在实际应用中,我们可能会遇到这样的计算场景:需要将多个小型矩阵(如32x8)与另一组矩阵(8xN)相乘后累加。传统做法需要单独处理每个矩阵乘法,效率较低。理想的方式是将这些操作融合,一次性完成所有矩阵乘法。
CUTLASS解决方案
1. 分组GEMM与Gather/Scatter融合
CUTLASS提供了两种关键功能:
- 分组GEMM:允许并行执行多个不同大小的矩阵乘法
- Gather/Scatter融合:将数据收集/分散操作与矩阵乘法结合
通过将这两种技术结合,可以显著提升计算效率。具体实现时需要注意:
- 在参数结构中添加Gather/Scatter索引指针
- 修改内核操作符以确定每个线程块处理的索引
- 将索引传递到内核底层
2. 针对不同架构的优化
对于Ampere架构(SM80/SM89)与Hopper架构,实现方式有所不同:
- Hopper架构有专门的Gather/Scatter GEMM扩展
- Ampere架构需要通过自定义索引实现类似功能
3. 边界条件处理
当使用Tensor Core时,需要注意:
- 最小M维度为16(由张量核心指令决定)
- 如果收集的M维度不满足要求,需要外部填充
- 填充操作应在设置参数结构前完成
高级功能实现
1. 带缩放因子的Gather/Scatter
可以在epilogue阶段加入广播缩放因子:
- 从A收集行,分散到D
- 每个分散的D行乘以从向量中收集的缩放因子
- 需要定制epilogue_with_broadcast等组件以支持Gather/Scatter索引
2. 浮点精度处理
使用半精度浮点(fp16)时需注意:
- 数值范围有限(最大2048)
- 超过2048后数值会饱和
- 不同填充函数(TensorFillSequential/BlockFillSequential)处理方式略有不同
最新进展
CUTLASS 3.5版本新增了基于Ampere架构的Gather/Scatter卷积核示例,为这类特殊计算模式提供了更高效的实现参考。开发者可以基于此示例进行二次开发,满足各种自定义网络层的需求。
总结
通过CUTLASS提供的Gather/Scatter与分组GEMM融合技术,开发者可以高效处理各种特殊形状的神经网络层。关键在于合理设计数据布局、线程分配以及边界条件处理。随着CUTLASS的持续更新,这类特殊计算模式的性能还将不断提升。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1