基于CUTLASSS的Gather/Scatter与分组GEMM融合技术解析
2025-05-31 16:28:57作者:卓艾滢Kingsley
背景介绍
在深度学习模型训练过程中,经常会遇到需要处理特殊形状网络层的情况。这些网络层往往需要进行大量的数据收集(Gather)和分散(Scatter)操作,特别是在处理小型且不规则形状的矩阵时。本文将以NVIDIA CUTLASS库为基础,探讨如何高效实现Gather/Scatter操作与分组GEMM(矩阵乘法)的融合技术。
技术挑战
在实际应用中,我们可能会遇到这样的计算场景:需要将多个小型矩阵(如32x8)与另一组矩阵(8xN)相乘后累加。传统做法需要单独处理每个矩阵乘法,效率较低。理想的方式是将这些操作融合,一次性完成所有矩阵乘法。
CUTLASS解决方案
1. 分组GEMM与Gather/Scatter融合
CUTLASS提供了两种关键功能:
- 分组GEMM:允许并行执行多个不同大小的矩阵乘法
- Gather/Scatter融合:将数据收集/分散操作与矩阵乘法结合
通过将这两种技术结合,可以显著提升计算效率。具体实现时需要注意:
- 在参数结构中添加Gather/Scatter索引指针
- 修改内核操作符以确定每个线程块处理的索引
- 将索引传递到内核底层
2. 针对不同架构的优化
对于Ampere架构(SM80/SM89)与Hopper架构,实现方式有所不同:
- Hopper架构有专门的Gather/Scatter GEMM扩展
- Ampere架构需要通过自定义索引实现类似功能
3. 边界条件处理
当使用Tensor Core时,需要注意:
- 最小M维度为16(由张量核心指令决定)
- 如果收集的M维度不满足要求,需要外部填充
- 填充操作应在设置参数结构前完成
高级功能实现
1. 带缩放因子的Gather/Scatter
可以在epilogue阶段加入广播缩放因子:
- 从A收集行,分散到D
- 每个分散的D行乘以从向量中收集的缩放因子
- 需要定制epilogue_with_broadcast等组件以支持Gather/Scatter索引
2. 浮点精度处理
使用半精度浮点(fp16)时需注意:
- 数值范围有限(最大2048)
- 超过2048后数值会饱和
- 不同填充函数(TensorFillSequential/BlockFillSequential)处理方式略有不同
最新进展
CUTLASS 3.5版本新增了基于Ampere架构的Gather/Scatter卷积核示例,为这类特殊计算模式提供了更高效的实现参考。开发者可以基于此示例进行二次开发,满足各种自定义网络层的需求。
总结
通过CUTLASS提供的Gather/Scatter与分组GEMM融合技术,开发者可以高效处理各种特殊形状的神经网络层。关键在于合理设计数据布局、线程分配以及边界条件处理。随着CUTLASS的持续更新,这类特殊计算模式的性能还将不断提升。
登录后查看全文
热门项目推荐
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0255Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
759
475

React Native鸿蒙化仓库
C++
150
239

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
318
1.04 K

一个轻量级 java 权限认证框架,让鉴权变得简单、优雅! —— 登录认证、权限认证、分布式Session会话、微服务网关鉴权、SSO 单点登录、OAuth2.0 统一认证
Java
73
13

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
85
15

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
376
361

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
79
2

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
122
255

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.04 K
0

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
78
9