基于CUTLASSS的Gather/Scatter与分组GEMM融合技术解析
2025-05-31 21:30:08作者:卓艾滢Kingsley
背景介绍
在深度学习模型训练过程中,经常会遇到需要处理特殊形状网络层的情况。这些网络层往往需要进行大量的数据收集(Gather)和分散(Scatter)操作,特别是在处理小型且不规则形状的矩阵时。本文将以NVIDIA CUTLASS库为基础,探讨如何高效实现Gather/Scatter操作与分组GEMM(矩阵乘法)的融合技术。
技术挑战
在实际应用中,我们可能会遇到这样的计算场景:需要将多个小型矩阵(如32x8)与另一组矩阵(8xN)相乘后累加。传统做法需要单独处理每个矩阵乘法,效率较低。理想的方式是将这些操作融合,一次性完成所有矩阵乘法。
CUTLASS解决方案
1. 分组GEMM与Gather/Scatter融合
CUTLASS提供了两种关键功能:
- 分组GEMM:允许并行执行多个不同大小的矩阵乘法
- Gather/Scatter融合:将数据收集/分散操作与矩阵乘法结合
通过将这两种技术结合,可以显著提升计算效率。具体实现时需要注意:
- 在参数结构中添加Gather/Scatter索引指针
- 修改内核操作符以确定每个线程块处理的索引
- 将索引传递到内核底层
2. 针对不同架构的优化
对于Ampere架构(SM80/SM89)与Hopper架构,实现方式有所不同:
- Hopper架构有专门的Gather/Scatter GEMM扩展
- Ampere架构需要通过自定义索引实现类似功能
3. 边界条件处理
当使用Tensor Core时,需要注意:
- 最小M维度为16(由张量核心指令决定)
- 如果收集的M维度不满足要求,需要外部填充
- 填充操作应在设置参数结构前完成
高级功能实现
1. 带缩放因子的Gather/Scatter
可以在epilogue阶段加入广播缩放因子:
- 从A收集行,分散到D
- 每个分散的D行乘以从向量中收集的缩放因子
- 需要定制epilogue_with_broadcast等组件以支持Gather/Scatter索引
2. 浮点精度处理
使用半精度浮点(fp16)时需注意:
- 数值范围有限(最大2048)
- 超过2048后数值会饱和
- 不同填充函数(TensorFillSequential/BlockFillSequential)处理方式略有不同
最新进展
CUTLASS 3.5版本新增了基于Ampere架构的Gather/Scatter卷积核示例,为这类特殊计算模式提供了更高效的实现参考。开发者可以基于此示例进行二次开发,满足各种自定义网络层的需求。
总结
通过CUTLASS提供的Gather/Scatter与分组GEMM融合技术,开发者可以高效处理各种特殊形状的神经网络层。关键在于合理设计数据布局、线程分配以及边界条件处理。随着CUTLASS的持续更新,这类特殊计算模式的性能还将不断提升。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250