Noseyparker项目多平台Docker构建优化实践
2025-07-06 11:30:57作者:盛欣凯Ernestine
背景介绍
Noseyparker是一个开源的安全扫描工具,项目团队在持续集成流程中遇到了Docker多平台镜像构建的挑战。传统的构建方式存在性能瓶颈和功能限制,需要进行架构优化。
原有构建方案的问题
项目最初采用QEMU模拟器在x86_64架构的GitHub Actions runner上构建多平台Docker镜像,这种方法存在三个主要缺陷:
-
构建速度慢:由于需要模拟ARM架构,aarch64平台的构建耗时接近2小时,其中大部分时间都消耗在非原生架构的模拟上。
-
构建频率受限:由于构建资源消耗过大,团队只能在发布版本时进行多平台构建,无法为每个提交都生成多平台镜像。
-
元数据不完整:使用的docker/build-push-action存在功能限制,导致生成的Docker镜像缺少完整的元数据信息。
技术优化方案
GitHub Actions平台近期推出了原生ARM64架构的runner,这为解决上述问题提供了新的技术可能性。优化后的构建流程采用以下策略:
-
原生架构并行构建:
- 在x86_64原生runner上构建amd64架构镜像
- 在ARM64原生runner上构建arm64架构镜像
- 两种架构的构建同时进行,互不干扰
-
镜像合并阶段:
- 在构建任务完成后,通过专用job将两个架构的镜像合并
- 添加完整的多平台元数据信息
- 推送到容器仓库
实施效果
新的构建方案带来了显著的改进:
- 构建时间大幅缩短:从原来的近2小时缩短到几分钟级别
- 构建频率提高:可以支持每次提交都生成多平台镜像
- 元数据完整性:解决了之前元数据缺失的问题
- 资源利用率优化:每个构建任务都在最适合的硬件架构上运行
技术细节
在实际实施过程中,团队需要注意以下技术要点:
-
runner选择:使用ubuntu-22.04-arm64-8-core和ubuntu-24.04-arm64-8-core等专门配置的ARM64 runner。
-
构建流程拆分:将原先单一的多平台构建任务拆分为三个独立阶段:
- amd64架构构建
- arm64架构构建
- 多平台镜像合并
-
元数据处理:在合并阶段确保为多平台镜像添加完整的标签、架构描述等元数据。
总结
通过对Noseyparker项目Docker构建流程的重新设计,团队成功解决了多平台镜像构建的性能瓶颈和功能限制。这一优化不仅提升了开发效率,也为项目的持续交付能力提供了更好的基础设施支持。这种基于原生架构的并行构建方案,对于其他需要支持多平台的开源项目也具有参考价值。
登录后查看全文
热门项目推荐
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0256Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
1 freeCodeCamp论坛排行榜项目中的错误日志规范要求2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp Cafe Menu项目中link元素的void特性解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析8 freeCodeCamp课程页面空白问题的技术分析与解决方案9 freeCodeCamp音乐播放器项目中的函数调用问题解析10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
118
174

React Native鸿蒙化仓库
C++
158
249

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
787
483

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
149
256

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
321
1.05 K

🔥Vue3 + Vite6+ TypeScript + Element-Plus 构建的后台管理前端模板,配套接口文档和后端源码,vue-element-admin 的 Vue3 版本。
Vue
253
43

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
382
364

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
79
2

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.04 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
816
22