Piccolo ORM中SQLiteEngine处理大整数的精度问题分析与解决方案
问题背景
在使用Piccolo ORM的SQLiteEngine时,开发者发现当尝试存储大整数(如Discord的guild ID:625757527765811240)时,实际存储的值会出现精度损失,变成了625757527765811200。这个问题在使用原生aiosqlite时并不存在,表明这是Piccolo ORM特有的问题。
问题分析
经过深入排查,发现问题根源在于Piccolo ORM的SQLiteEngine中整数类型转换器的实现方式。当前代码中使用了int(float(value))
的方式进行转换,这会导致大整数在转换过程中丢失精度。
具体来说,Python的浮点数类型在处理极大整数时会存在精度限制。当执行int(float(625757527765811240))
时,由于浮点数无法精确表示这么大的整数,导致转换结果变为625757527765811200。
技术细节
-
SQLite的整数存储能力:SQLite本身能够完整存储大整数,其INTEGER类型可以存储64位有符号整数(-2^63到2^63-1)。
-
Piccolo的转换机制:Piccolo ORM在从SQLite读取数据时,会通过类型转换器将结果转换为Python类型。当前的整数转换器实现存在缺陷。
-
浮点数精度问题:IEEE 754双精度浮点数只有53位有效数字精度,当整数超过2^53时,就无法精确表示了。
解决方案
临时解决方案
开发者可以使用以下monkey patch作为临时解决方案:
import sqlite3
from piccolo.engine import sqlite
@sqlite.decode_to_string
def convert_int_out(value: str) -> int:
return int(value)
sqlite.CONVERTERS["INTEGER"] = convert_int_out
sqlite3.register_converter("INTEGER", convert_int_out)
永久解决方案
Piccolo ORM团队已经确认这是一个bug,并提出了修复方案:将转换器实现从int(float(value))
改为直接使用int(value)
。这样可以避免不必要的浮点数转换,保持整数的完整精度。
最佳实践建议
-
对于大整数存储:虽然SQLite的INTEGER类型能够存储大整数,但在定义表结构时,明确使用BigInt或BigSerial类型可以提高代码的可读性和可移植性。
-
类型选择:
- 对于普通整数:使用Integer或Serial
- 对于大整数:使用BigInt或BigSerial
- 对于需要精确小数的情况:使用Numeric或Decimal
-
版本升级:关注Piccolo ORM的更新,及时升级到包含此修复的版本。
总结
这个问题展示了ORM框架在处理底层数据库类型时可能遇到的边界情况。Piccolo ORM团队快速响应并修复了这个精度问题,体现了该项目的活跃维护状态。开发者在处理大整数时应当注意数据类型的选用,并在遇到类似问题时考虑框架层面的类型转换机制。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0119AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









