TT-Metal v0.59.0-rc30 版本技术解析与架构演进
TT-Metal 是 Tenstorrent 公司开发的一款面向高性能计算的金属级框架,专注于为 AI 和机器学习工作负载提供底层硬件加速支持。本次发布的 v0.59.0-rc30 版本带来了多项重要的架构改进和功能增强,特别是在分布式计算、内存管理和模型支持方面有显著提升。
核心架构改进
分布式计算能力增强
本次版本引入了全新的 FabricContext 架构,彻底重构了设备初始化流程。这一改进使得系统能够更好地支持在 TG 网关上启动分布式计算任务。FabricContext 作为分布式计算的核心上下文管理器,提供了更细粒度的资源控制和任务调度能力。
技术团队还实现了对 intermesh 路由的内核启动支持,这意味着计算任务可以在不同的网格节点间更高效地路由和执行。这一特性为大规模分布式训练和推理场景提供了更好的基础支持。
内存管理优化
在内存管理方面,v0.59.0-rc30 版本做出了两项重要改进:
-
移除了主机端缓冲区分配/释放的概念,改为更高效的分布式主机缓冲区管理机制(DistributeHostBuffer)。这一变化显著减少了内存管理开销,特别是在大规模张量操作场景下。
-
合并了全局循环缓冲区的实现文件,简化了代码结构,提高了缓冲区访问效率。新的实现减少了不必要的内存拷贝,特别适合需要频繁数据交换的模型训练场景。
模型支持与性能优化
大语言模型支持增强
针对当前流行的大语言模型,本次更新特别优化了 Llama 和 Mistral 系列模型的支持:
-
解决了 Llama TG 解码器在超过 4k 序列长度时的挂起问题,显著提升了长文本生成场景的稳定性。
-
增加了对 MistralForCausalLM 类的支持,为 vLLM 框架提供了更好的兼容性。
-
优化了批量大小为 1 时的推理性能,使得单请求场景的延迟显著降低。
卷积神经网络优化
在 Conv2d 实现中,技术团队处理了一个边缘情况:当 split_reader 启用且 act_block_h=1 时的特殊场景。这一修复确保了在各种输入尺寸下卷积操作的稳定性和性能一致性。
开发者体验改进
代码质量提升
-
完成了从 SLAVE 到 SUBORDINATE 的命名重构,使代码术语更加规范和现代化。
-
修复了多个测试用例,包括针对 harvested BH 架构的 fold_transpose 测试修正,以及减少 one-to-all 数据移动测试中使用的核心数以规避内核参数限制。
-
移除了 GraySkull 架构的大部分使用,简化了代码维护路径。
测试基础设施增强
-
为 tt-mlir 的 C++ 代码生成器(emitc)添加了测试基础设施,确保代码生成的质量和稳定性。
-
重新启用了单卡和 T3K 的异步测试,并优化了权重下载流程,减少了 wget 的输出干扰。
性能与稳定性修复
-
修复了程序运行时 ID 在以太网微基准测试中的问题,确保了性能测量的准确性。
-
解决了调试构建中 dprint/watcher 断言可能被错误触发的问题,提高了开发环境的稳定性。
-
优化了三层架构训练中自定义分词器启用时的处理逻辑,解决了相关错误和警告。
总结
TT-Metal v0.59.0-rc30 版本在分布式计算架构、内存管理和模型支持等方面做出了重要改进。这些变化不仅提升了框架的性能和稳定性,也为开发者提供了更好的使用体验。特别是对大规模语言模型的支持增强,使得 TT-Metal 在 AI 推理和训练场景中的竞争力得到进一步提升。技术团队持续关注边缘情况的处理和测试覆盖率的提高,确保了框架在各种应用场景下的可靠性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00