Shiki项目中的C++语法高亮性能优化实践
2025-05-20 20:04:09作者:平淮齐Percy
背景与问题发现
Shiki作为一款基于TextMate语法的代码高亮工具,在处理C++语言时遇到了显著的性能瓶颈。开发者报告称,在MacBook M1设备上,一个简单的C++代码片段需要约10秒才能完成高亮处理,这显然无法满足实际应用需求。
性能瓶颈分析
经过深入分析,发现性能问题主要集中在两个方面:
- 正则表达式执行时间过长:两个关键的正则模式
function_call和function_definition在执行时消耗了大部分时间 - 正则表达式构造开销:C++语法中大量使用原子组和占有量词,导致正则表达式构造过程缓慢
关键优化策略
正则表达式模式优化
针对function_call和function_definition这两个性能热点,提出了以下优化方案:
-
简化否定断言结构:
- 将原本重复的
(\Wfoo|^foo|\Wbar|^bar)模式优化为((?:\W|^)(?:foo|bar)) - 这种优化减少了50%的备选分支,显著降低了回溯次数
- 将原本重复的
-
量词使用优化:
- 调整量词的使用策略,在保证匹配正确性的前提下减少不必要的占有量词
- 例如将
>)\s*+)?::)*\s*+优化为>)\s*)?+::)*+\s*
-
注释匹配优化:
- 使用Oniguruma特有的"absent repeater"特性
(?~...)来简化块注释匹配 - 替代原有的复杂模式,提高匹配效率
- 使用Oniguruma特有的"absent repeater"特性
构造过程优化
-
延迟编译技术:
- 对于超长正则模式(超过3000字符)采用延迟编译策略
- 仅在首次使用时进行编译,避免不必要的初始化开销
-
正则表达式缓存:
- 实现正则表达式结果的缓存机制
- 对于重复出现的匹配场景直接使用缓存结果
技术实现细节
Oniguruma语法特性利用
-
现代Oniguruma对变长后顾断言的支持:
- 新版本Oniguruma放宽了对变长后顾断言中分组使用的限制
- 这使得更高效的模式结构成为可能
-
特殊语法元素优化:
- 利用
\b单词边界替代复杂的(?:\W|^)结构 - 在适当场景使用Oniguruma特有的"absent repeater"特性
- 利用
正则表达式优化器开发
-
AST转换优化:
- 开发专门的Oniguruma语法解析器
- 基于AST进行模式转换和优化
-
常见优化规则:
- 移除不必要的非捕获组
- 合并重复的模式结构
- 简化字符类表达
优化效果
经过上述优化后,C++语法高亮的性能得到显著提升:
- 正则执行时间:热点正则的执行时间减少50%以上
- 初始化时间:通过延迟编译技术,初始化时间大幅降低
- 内存占用:优化后的正则模式体积减小约5%
经验总结
-
正则表达式设计原则:
- 避免过度使用原子组和占有量词
- 注意嵌套量词可能导致的回溯爆炸
- 优先使用互斥的备选分支
-
性能优化方法论:
- 识别真正的性能热点
- 理解不同正则引擎的特性差异
- 平衡可读性与性能
-
工具链建设:
- 开发专用优化工具的必要性
- 自动化优化流程的价值
这些优化经验不仅适用于Shiki项目,对于其他需要处理复杂语法高亮的场景也具有参考价值。通过系统性的分析和针对性的优化,可以显著提升语法高亮工具在处理复杂语言时的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137