Wasabi 项目使用指南
1. 项目介绍
Wasabi 是一个用于动态分析 WebAssembly 二进制文件的框架。它基于二进制插桩技术,提供了对 WebAssembly 程序的动态分析能力。Wasabi 的核心功能包括 WebAssembly 解析器、插桩库和编码器,这些组件都是用 Rust 编写的。Wasabi 不仅适用于动态分析,还可以用于其他 WebAssembly 分析和插桩项目。
2. 项目快速启动
2.1 环境准备
在开始使用 Wasabi 之前,请确保您的系统已经安装了以下依赖:
- Git
- CMake
- GCC 或 Clang
- 现代浏览器(如 Firefox 或 Chrome)
- WebAssembly Binary Toolkit (WABT)
- Emscripten
- Rust 和 Cargo
2.2 安装 Wasabi
首先,克隆 Wasabi 仓库并进入项目目录:
git clone https://github.com/danleh/wasabi.git
cd wasabi/crates/wasabi
接下来,使用 Cargo 安装 Wasabi:
cargo install --path .
2.3 使用 Wasabi 进行插桩
假设您已经有一个 WebAssembly 文件 hello.wasm,您可以使用 Wasabi 对其进行插桩:
wasabi hello.wasm
这将生成两个文件:
out/hello.wasm: 插桩后的二进制文件out/hello.wasabi.js: Wasabi 加载器、运行时和生成的 JavaScript 代码
2.4 运行插桩后的程序
将插桩后的二进制文件和生成的 JavaScript 代码替换原始文件,并运行程序:
mv hello.wasm hello.orig.wasm
cp out/* .
然后,使用 Emscripten 生成的 HTML 文件运行程序:
emrun --no_browser --port 8080 .
在浏览器中打开 http://localhost:8080/hello.html,您将看到插桩后的程序运行结果。
3. 应用案例和最佳实践
3.1 日志分析
Wasabi 可以用于记录 WebAssembly 程序中所有指令的输入和输出。以下是一个简单的日志分析示例:
- 将
log-all.js分析脚本复制到项目目录:
cp /path/to/wasabi/analyses/log-all.js .
- 将分析脚本包含在 Emscripten 生成的 HTML 文件中:
sed -i '/<script src="hello.wasabi.js"><\/script>/a <script src="log-all.js"></script>' hello.html
- 再次运行程序,您将在浏览器控制台中看到详细的日志输出。
3.2 性能分析
Wasabi 还可以用于性能分析,通过插桩代码来收集程序的执行时间和其他性能指标。您可以编写自定义的分析脚本来收集这些数据。
4. 典型生态项目
4.1 WebAssembly Binary Toolkit (WABT)
WABT 是一个用于处理 WebAssembly 二进制文件的工具集,包括 wat2wasm、wasm2wat 和 wasm-objdump 等工具。Wasabi 依赖于 WABT 进行二进制文件的解析和转换。
4.2 Emscripten
Emscripten 是一个将 C/C++ 代码编译为 WebAssembly 的工具链。Wasabi 可以与 Emscripten 结合使用,对编译后的 WebAssembly 程序进行动态分析。
4.3 Rust
Wasabi 的核心组件是用 Rust 编写的,Rust 的强大性能和安全性使其成为 WebAssembly 开发的理想选择。Rust 社区也提供了丰富的工具和库,支持 WebAssembly 的开发和分析。
通过以上步骤,您可以快速上手 Wasabi 项目,并利用其强大的动态分析功能来优化和调试 WebAssembly 程序。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00