Sanic框架中实现POST请求的响应流式传输
2025-05-12 07:47:56作者:何举烈Damon
在Sanic框架中实现POST请求的响应流式传输是一个高级功能,它允许服务器在处理POST请求时逐步发送响应数据,而不是等待所有数据处理完成后再一次性发送。这种技术特别适用于需要处理大量数据或需要实时传输结果的场景。
响应流式传输的基本原理
响应流式传输的核心思想是服务器可以分批次发送响应数据,而不需要等待整个响应体完全生成。这在处理大文件下载、实时数据推送或与大型语言模型交互等场景中非常有用。
实现POST流式响应的关键步骤
- 创建流式响应对象:使用Sanic的
stream方法创建一个流式响应对象 - 设置适当的响应头:特别是
Content-Type和Transfer-Encoding - 分块写入数据:在处理过程中逐步写入响应数据
- 正确处理连接关闭:确保在客户端断开连接时能够优雅地终止
代码实现示例
以下是一个完整的POST流式响应实现示例,展示了如何与大型语言模型API交互并流式返回处理结果:
from sanic import Sanic, response
import requests
import json
app = Sanic("StreamingPostExample")
@app.route("/ans", methods=["POST"])
async def answer(request):
# 获取用户历史聊天数据
chat_history = request.form.get("chat_history")
# 创建流式响应
async def streaming_response(response):
# 调用大型语言模型API
url = "https://xxx/sse/paas4Json/..."
headers = {'Accept': 'text/event-stream'}
try:
with requests.post(url, data=chat_history, stream=True, headers=headers) as resp:
resp.raise_for_status()
# 处理流式响应
for line in resp.iter_lines():
if line: # 过滤掉空行
line = line.decode('utf-8')
if line.startswith('data:'):
try:
data = json.loads(line[5:]) # 去掉"data:"前缀
value = json.loads(data["data"][0]["value"])
content = value["MessageBody"]["DirectMessageBody"]["SentenceList"][0]["Content"]
# 写入流式响应
await response.write(content.encode('utf-8'))
except (json.JSONDecodeError, KeyError) as e:
# 处理解析错误
error_msg = f"Error processing data: {str(e)}"
await response.write(error_msg.encode('utf-8'))
break
except Exception as e:
error_msg = f"API request failed: {str(e)}"
await response.write(error_msg.encode('utf-8'))
return response.stream(
streaming_response,
content_type='text/plain'
)
技术要点解析
- 异步流式处理:使用
async/await语法实现非阻塞的流式处理 - 错误处理:妥善处理API调用和数据处理过程中可能出现的各种异常
- 内存效率:流式处理避免了将整个响应体保存在内存中,特别适合处理大量数据
- 实时性:数据可以立即发送给客户端,而不需要等待所有处理完成
应用场景
这种技术特别适用于以下场景:
- 与大型语言模型交互时逐步返回生成结果
- 处理大文件上传后的实时处理结果返回
- 需要长时间运行的计算任务的结果推送
- 实时数据分析和处理结果的连续输出
性能考虑
- 连接保持:长时间保持连接可能会增加服务器负担
- 超时处理:需要合理设置客户端和服务器的超时时间
- 错误恢复:考虑在网络中断后如何恢复流式传输
- 背压处理:当客户端处理速度跟不上服务器发送速度时的处理策略
通过掌握Sanic框架中的POST流式响应技术,开发者可以构建更加高效、实时的Web应用程序,特别是在需要处理大量数据或提供实时交互体验的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896