Sanic框架中实现POST请求的响应流式传输
2025-05-12 06:33:12作者:何举烈Damon
在Sanic框架中实现POST请求的响应流式传输是一个高级功能,它允许服务器在处理POST请求时逐步发送响应数据,而不是等待所有数据处理完成后再一次性发送。这种技术特别适用于需要处理大量数据或需要实时传输结果的场景。
响应流式传输的基本原理
响应流式传输的核心思想是服务器可以分批次发送响应数据,而不需要等待整个响应体完全生成。这在处理大文件下载、实时数据推送或与大型语言模型交互等场景中非常有用。
实现POST流式响应的关键步骤
- 创建流式响应对象:使用Sanic的
stream方法创建一个流式响应对象 - 设置适当的响应头:特别是
Content-Type和Transfer-Encoding - 分块写入数据:在处理过程中逐步写入响应数据
- 正确处理连接关闭:确保在客户端断开连接时能够优雅地终止
代码实现示例
以下是一个完整的POST流式响应实现示例,展示了如何与大型语言模型API交互并流式返回处理结果:
from sanic import Sanic, response
import requests
import json
app = Sanic("StreamingPostExample")
@app.route("/ans", methods=["POST"])
async def answer(request):
# 获取用户历史聊天数据
chat_history = request.form.get("chat_history")
# 创建流式响应
async def streaming_response(response):
# 调用大型语言模型API
url = "https://xxx/sse/paas4Json/..."
headers = {'Accept': 'text/event-stream'}
try:
with requests.post(url, data=chat_history, stream=True, headers=headers) as resp:
resp.raise_for_status()
# 处理流式响应
for line in resp.iter_lines():
if line: # 过滤掉空行
line = line.decode('utf-8')
if line.startswith('data:'):
try:
data = json.loads(line[5:]) # 去掉"data:"前缀
value = json.loads(data["data"][0]["value"])
content = value["MessageBody"]["DirectMessageBody"]["SentenceList"][0]["Content"]
# 写入流式响应
await response.write(content.encode('utf-8'))
except (json.JSONDecodeError, KeyError) as e:
# 处理解析错误
error_msg = f"Error processing data: {str(e)}"
await response.write(error_msg.encode('utf-8'))
break
except Exception as e:
error_msg = f"API request failed: {str(e)}"
await response.write(error_msg.encode('utf-8'))
return response.stream(
streaming_response,
content_type='text/plain'
)
技术要点解析
- 异步流式处理:使用
async/await语法实现非阻塞的流式处理 - 错误处理:妥善处理API调用和数据处理过程中可能出现的各种异常
- 内存效率:流式处理避免了将整个响应体保存在内存中,特别适合处理大量数据
- 实时性:数据可以立即发送给客户端,而不需要等待所有处理完成
应用场景
这种技术特别适用于以下场景:
- 与大型语言模型交互时逐步返回生成结果
- 处理大文件上传后的实时处理结果返回
- 需要长时间运行的计算任务的结果推送
- 实时数据分析和处理结果的连续输出
性能考虑
- 连接保持:长时间保持连接可能会增加服务器负担
- 超时处理:需要合理设置客户端和服务器的超时时间
- 错误恢复:考虑在网络中断后如何恢复流式传输
- 背压处理:当客户端处理速度跟不上服务器发送速度时的处理策略
通过掌握Sanic框架中的POST流式响应技术,开发者可以构建更加高效、实时的Web应用程序,特别是在需要处理大量数据或提供实时交互体验的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
75
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692