Dreadnot 技术文档
2024-12-24 14:55:05作者:凌朦慧Richard
1. 安装指南
环境要求
- Node.js(建议使用最新稳定版本)
- npm(通常随Node.js一起安装)
- Vagrant(用于开发环境)
- Virtualbox(用于运行Vagrant虚拟机)
安装步骤
-
安装Node.js和npm:
- 访问Node.js官网下载并安装适合你操作系统的Node.js版本。
- npm会随Node.js一起安装。
-
安装Vagrant和Virtualbox:
- 访问Vagrant官网下载并安装Vagrant。
- 访问Virtualbox官网下载并安装Virtualbox。
-
克隆项目仓库:
git clone https://github.com/racker/dreadnot.git cd dreadnot -
安装依赖:
npm install -
启动开发环境(可选):
vagrant up启动后,访问
http://localhost:8000即可查看Dreadnot界面。
2. 项目的使用说明
配置文件
Dreadnot的配置文件是一个JavaScript文件,通常命名为 local_settings.js。配置文件中包含以下主要部分:
- name:Dreadnot实例的名称,用于显示。
- env:环境名称,如
dev、staging或production。 - data_root:Dreadnot使用的数据根目录。
- default_url:Dreadnot的访问URL。
- htpasswd_file:用于认证的htpasswd文件路径。
- stacks:定义需要部署的代码库及其相关配置。
- github:GitHub组织信息,用于构建URL。
- plugins:可选的插件配置,如IRC、邮件和Hipchat通知。
启动Dreadnot
在项目根目录下运行以下命令启动Dreadnot:
npm install dreadnot -g
dreadnot -c ./local_settings.js -s ./stacks -p 8000
这将使用指定的配置文件和堆栈目录启动Dreadnot,并监听端口8000。
3. 项目API使用文档
主要API接口
Dreadnot的API主要通过配置文件中的 stacks 和 plugins 进行定义。以下是一些关键的API接口:
1. get_deployedRevision
- 功能:获取已部署的代码版本。
- 参数:
environment:环境名称。region:区域名称。callback:回调函数,接收(err, deployed_revision)。
2. targets
- 功能:定义部署目标及其任务列表。
- 示例:
targets: { deploy: ['task_preDeploy', 'task_deploy', 'task_postDeploy'], finally: ['task_cleanup'] }
3. 任务函数
- 功能:定义具体的部署任务。
- 参数:
stack:堆栈对象,包含stackConfig和config。baton:任务执行时的共享对象,包含日志方法。args:任务参数,如dryrun、environment、region、revision和user。callback:任务完成后的回调函数。
4. 项目安装方式
全局安装
npm install dreadnot -g
本地安装
在项目目录下运行:
npm install
开发环境
使用Vagrant启动开发环境:
vagrant up
启动后,访问 http://localhost:8000 即可查看Dreadnot界面。
启动命令
dreadnot -c ./local_settings.js -s ./stacks -p 8000
这将使用指定的配置文件和堆栈目录启动Dreadnot,并监听端口8000。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443