OpenXLA IREE中可执行文件序数解析的自定义支持
在OpenXLA IREE编译器中,针对不同硬件目标(HAL targets)的需求,需要能够根据设备能力和运行时工作负载动态选择不同的导出函数。本文深入探讨了这一技术需求的背景、挑战及实现方案。
技术背景
现代异构计算环境中,不同硬件设备具有不同的能力特性。编译器需要生成能够适应这些差异的代码,同时还要考虑运行时工作负载的变化。传统静态编译方法无法满足这种灵活性需求,因此需要引入动态选择机制。
核心挑战
实现动态选择面临两大主要挑战:
-
命令缓冲区记忆化问题:当程序输入具有动态形状时,命令缓冲区需要记忆化处理。但一旦记录,命令缓冲区中的命令就不能更改,必须重新记录任何序数变化。
-
数据依赖工作负载:更复杂的情况是工作负载本身依赖于数据内容,这需要完整的设备同步和主机回读操作,严重影响性能。
解决方案设计
IREE采用了一种谨慎的解决方案,其核心设计要点包括:
-
特殊导出类型:引入一种特殊的
hal.executable.export
,它不仅包含工作组计数区域,还包含一个返回同一变体中其他导出符号索引的区域。 -
符号一致性要求:所有目标符号必须具有相同的布局,但可以有不同的工作组大小和转换信息等。
-
转换过程:在Stream到HAL的降级过程中,选择区域将被内联到调度站点,并转换为对每个可能引用的符号的
util.switch
操作。
实现细节
实现时特别注意了以下技术细节:
-
自引用支持:导出函数可以选择返回自身序数,实现可选特化。
-
性能考虑:该特性被设计为"性能不友好"的,仅在绝对必要时使用。
-
未来扩展:设计考虑了未来支持设备端动态调度的可能性,如通过间接调度命令处理序数缓冲区。
典型应用场景
这种机制特别适用于以下情况:
-
HIP/HSA中的SGPR/VGPR分配(作为内核对象信息的一部分嵌入命令流)
-
Vulkan、Metal等API中基于工作负载变化结构属性的情况
-
需要根据设备能力选择不同内核实现的场景
总结
OpenXLA IREE通过引入可执行文件序数解析的自定义支持,为处理异构硬件和动态工作负载提供了灵活解决方案。虽然该特性可能带来性能开销,但在特定场景下是必要的折衷方案。未来随着设备端动态调度支持的完善,这一机制将变得更加强大和高效。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









