首页
/ OpenXLA IREE中可执行文件序数解析的自定义支持

OpenXLA IREE中可执行文件序数解析的自定义支持

2025-06-26 09:22:02作者:彭桢灵Jeremy

在OpenXLA IREE编译器中,针对不同硬件目标(HAL targets)的需求,需要能够根据设备能力和运行时工作负载动态选择不同的导出函数。本文深入探讨了这一技术需求的背景、挑战及实现方案。

技术背景

现代异构计算环境中,不同硬件设备具有不同的能力特性。编译器需要生成能够适应这些差异的代码,同时还要考虑运行时工作负载的变化。传统静态编译方法无法满足这种灵活性需求,因此需要引入动态选择机制。

核心挑战

实现动态选择面临两大主要挑战:

  1. 命令缓冲区记忆化问题:当程序输入具有动态形状时,命令缓冲区需要记忆化处理。但一旦记录,命令缓冲区中的命令就不能更改,必须重新记录任何序数变化。

  2. 数据依赖工作负载:更复杂的情况是工作负载本身依赖于数据内容,这需要完整的设备同步和主机回读操作,严重影响性能。

解决方案设计

IREE采用了一种谨慎的解决方案,其核心设计要点包括:

  1. 特殊导出类型:引入一种特殊的hal.executable.export,它不仅包含工作组计数区域,还包含一个返回同一变体中其他导出符号索引的区域。

  2. 符号一致性要求:所有目标符号必须具有相同的布局,但可以有不同的工作组大小和转换信息等。

  3. 转换过程:在Stream到HAL的降级过程中,选择区域将被内联到调度站点,并转换为对每个可能引用的符号的util.switch操作。

实现细节

实现时特别注意了以下技术细节:

  1. 自引用支持:导出函数可以选择返回自身序数,实现可选特化。

  2. 性能考虑:该特性被设计为"性能不友好"的,仅在绝对必要时使用。

  3. 未来扩展:设计考虑了未来支持设备端动态调度的可能性,如通过间接调度命令处理序数缓冲区。

典型应用场景

这种机制特别适用于以下情况:

  1. HIP/HSA中的SGPR/VGPR分配(作为内核对象信息的一部分嵌入命令流)

  2. Vulkan、Metal等API中基于工作负载变化结构属性的情况

  3. 需要根据设备能力选择不同内核实现的场景

总结

OpenXLA IREE通过引入可执行文件序数解析的自定义支持,为处理异构硬件和动态工作负载提供了灵活解决方案。虽然该特性可能带来性能开销,但在特定场景下是必要的折衷方案。未来随着设备端动态调度支持的完善,这一机制将变得更加强大和高效。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8