OpenXLA IREE中可执行文件序数解析的自定义支持
在OpenXLA IREE编译器中,针对不同硬件目标(HAL targets)的需求,需要能够根据设备能力和运行时工作负载动态选择不同的导出函数。本文深入探讨了这一技术需求的背景、挑战及实现方案。
技术背景
现代异构计算环境中,不同硬件设备具有不同的能力特性。编译器需要生成能够适应这些差异的代码,同时还要考虑运行时工作负载的变化。传统静态编译方法无法满足这种灵活性需求,因此需要引入动态选择机制。
核心挑战
实现动态选择面临两大主要挑战:
-
命令缓冲区记忆化问题:当程序输入具有动态形状时,命令缓冲区需要记忆化处理。但一旦记录,命令缓冲区中的命令就不能更改,必须重新记录任何序数变化。
-
数据依赖工作负载:更复杂的情况是工作负载本身依赖于数据内容,这需要完整的设备同步和主机回读操作,严重影响性能。
解决方案设计
IREE采用了一种谨慎的解决方案,其核心设计要点包括:
-
特殊导出类型:引入一种特殊的
hal.executable.export,它不仅包含工作组计数区域,还包含一个返回同一变体中其他导出符号索引的区域。 -
符号一致性要求:所有目标符号必须具有相同的布局,但可以有不同的工作组大小和转换信息等。
-
转换过程:在Stream到HAL的降级过程中,选择区域将被内联到调度站点,并转换为对每个可能引用的符号的
util.switch操作。
实现细节
实现时特别注意了以下技术细节:
-
自引用支持:导出函数可以选择返回自身序数,实现可选特化。
-
性能考虑:该特性被设计为"性能不友好"的,仅在绝对必要时使用。
-
未来扩展:设计考虑了未来支持设备端动态调度的可能性,如通过间接调度命令处理序数缓冲区。
典型应用场景
这种机制特别适用于以下情况:
-
HIP/HSA中的SGPR/VGPR分配(作为内核对象信息的一部分嵌入命令流)
-
Vulkan、Metal等API中基于工作负载变化结构属性的情况
-
需要根据设备能力选择不同内核实现的场景
总结
OpenXLA IREE通过引入可执行文件序数解析的自定义支持,为处理异构硬件和动态工作负载提供了灵活解决方案。虽然该特性可能带来性能开销,但在特定场景下是必要的折衷方案。未来随着设备端动态调度支持的完善,这一机制将变得更加强大和高效。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00