MNN图像预处理:保持宽高比缩放与填充的实现方法
2025-05-22 13:45:13作者:史锋燃Gardner
背景介绍
在使用MNN深度学习推理框架进行图像处理时,经常需要将不同尺寸的输入图像调整为模型所需的固定尺寸。直接缩放会导致图像变形失真,因此需要采用保持宽高比的缩放方式,并在必要时进行填充处理。
问题分析
当原始图像尺寸为1000x748,而模型需要320x320的输入时,直接缩放会导致图像严重变形。正确的做法是先按比例缩放到320x238(保持原宽高比),然后在上下各填充41像素(共82像素)以达到320x320的尺寸。
OpenCV实现方案
在OpenCV中,我们可以使用以下代码实现这一需求:
int resizedWidth = 320;
int resizedHeight = 238;
int Pad_W = 0;
int Pad_H = (320 - 238) / 2;
cv::resize(croppedImg, resizedImg, cv::Size(resizedWidth, resizedHeight), 0.0, 0.0, 2);
cv::copyMakeBorder(resizedImg, resizedImg, Pad_H, Pad_H, Pad_W, Pad_W,
cv::BORDER_CONSTANT, cv::Scalar(128, 128, 128));
这种方法简单直观,但我们需要在MNN框架中实现相同的效果。
MNN实现方案
在MNN中,可以通过ImageProcessing模块实现类似功能。以下是关键实现步骤:
- 初始化配置:设置图像处理参数,包括填充方式和填充值
- 创建变换矩阵:定义从原始图像到目标尺寸的变换关系
- 设置填充:指定填充值和填充位置
- 执行转换:将处理后的图像数据输入到模型中
// 基本参数设置
int model_w = 320;
int model_h = 320;
int img_w = 1000;
int img_h = 748;
int img_c = 3;
int resized_w = 320;
int resized_h = 238;
// 配置图像处理参数
config.wrap = MNN::CV::Wrap::ZERO;
MNN::Tensor *tensorPtr = netPtr->getSessionInput(sessionPtr, nullptr);
MNN::CV::Matrix transform;
// 设置输入张量尺寸
std::vector<int> dims = {1, img_c, model_h, model_w};
netPtr->resizeTensor(tensorPtr, dims);
netPtr->resizeSession(sessionPtr);
// 定义变换矩阵
transform.preScale(1.0f / (float)img_w, 1.0f / (float)img_h);
transform.preScale((float)resized_w, (float)resized_h);
transform.postScale(1.0f / (float)model_w, 1.0f / (float)model_h);
transform.postScale((float)img_w, (float)img_h);
// 创建并配置图像处理器
MNN::CV::ImageProcess *process = MNN::CV::ImageProcess::create(config);
process->setPadding(128); // 设置填充值为128
process->setMatrix(transform);
// 执行转换
process->convert(data, img_w, img_h, img_w * img_c, tensorPtr);
netPtr->runSession(sessionPtr);
调试技巧
- 输出检查:可以使用MNN提供的demo/exec/pictureRotate.cpp中的方法将处理后的图像输出为PNG格式,验证变换矩阵是否正确
- MNN-OpenCV集成:如果项目允许,可以启用MNN的OpenCV支持(编译时添加-DMNN_BUILD_OPENCV=true),这样可以使用更接近OpenCV的处理方式
注意事项
- 变换矩阵的定义顺序很重要,preScale和postScale会影响最终效果
- 填充值需要根据模型要求设置,常见的有0、128等
- 在处理前确保输入张量的尺寸已正确设置
通过以上方法,我们可以在MNN中实现与OpenCV类似的保持宽高比的图像缩放和填充功能,为模型提供符合要求的输入数据。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443