MNN图像预处理:保持宽高比缩放与填充的实现方法
2025-05-22 20:11:22作者:史锋燃Gardner
背景介绍
在使用MNN深度学习推理框架进行图像处理时,经常需要将不同尺寸的输入图像调整为模型所需的固定尺寸。直接缩放会导致图像变形失真,因此需要采用保持宽高比的缩放方式,并在必要时进行填充处理。
问题分析
当原始图像尺寸为1000x748,而模型需要320x320的输入时,直接缩放会导致图像严重变形。正确的做法是先按比例缩放到320x238(保持原宽高比),然后在上下各填充41像素(共82像素)以达到320x320的尺寸。
OpenCV实现方案
在OpenCV中,我们可以使用以下代码实现这一需求:
int resizedWidth = 320;
int resizedHeight = 238;
int Pad_W = 0;
int Pad_H = (320 - 238) / 2;
cv::resize(croppedImg, resizedImg, cv::Size(resizedWidth, resizedHeight), 0.0, 0.0, 2);
cv::copyMakeBorder(resizedImg, resizedImg, Pad_H, Pad_H, Pad_W, Pad_W,
cv::BORDER_CONSTANT, cv::Scalar(128, 128, 128));
这种方法简单直观,但我们需要在MNN框架中实现相同的效果。
MNN实现方案
在MNN中,可以通过ImageProcessing模块实现类似功能。以下是关键实现步骤:
- 初始化配置:设置图像处理参数,包括填充方式和填充值
- 创建变换矩阵:定义从原始图像到目标尺寸的变换关系
- 设置填充:指定填充值和填充位置
- 执行转换:将处理后的图像数据输入到模型中
// 基本参数设置
int model_w = 320;
int model_h = 320;
int img_w = 1000;
int img_h = 748;
int img_c = 3;
int resized_w = 320;
int resized_h = 238;
// 配置图像处理参数
config.wrap = MNN::CV::Wrap::ZERO;
MNN::Tensor *tensorPtr = netPtr->getSessionInput(sessionPtr, nullptr);
MNN::CV::Matrix transform;
// 设置输入张量尺寸
std::vector<int> dims = {1, img_c, model_h, model_w};
netPtr->resizeTensor(tensorPtr, dims);
netPtr->resizeSession(sessionPtr);
// 定义变换矩阵
transform.preScale(1.0f / (float)img_w, 1.0f / (float)img_h);
transform.preScale((float)resized_w, (float)resized_h);
transform.postScale(1.0f / (float)model_w, 1.0f / (float)model_h);
transform.postScale((float)img_w, (float)img_h);
// 创建并配置图像处理器
MNN::CV::ImageProcess *process = MNN::CV::ImageProcess::create(config);
process->setPadding(128); // 设置填充值为128
process->setMatrix(transform);
// 执行转换
process->convert(data, img_w, img_h, img_w * img_c, tensorPtr);
netPtr->runSession(sessionPtr);
调试技巧
- 输出检查:可以使用MNN提供的demo/exec/pictureRotate.cpp中的方法将处理后的图像输出为PNG格式,验证变换矩阵是否正确
- MNN-OpenCV集成:如果项目允许,可以启用MNN的OpenCV支持(编译时添加-DMNN_BUILD_OPENCV=true),这样可以使用更接近OpenCV的处理方式
注意事项
- 变换矩阵的定义顺序很重要,preScale和postScale会影响最终效果
- 填充值需要根据模型要求设置,常见的有0、128等
- 在处理前确保输入张量的尺寸已正确设置
通过以上方法,我们可以在MNN中实现与OpenCV类似的保持宽高比的图像缩放和填充功能,为模型提供符合要求的输入数据。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
211
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212