Npgsql.EntityFrameworkCore.PostgreSQL 中使用 NetTopologySuite 处理地理空间数据
在使用 Npgsql.EntityFrameworkCore.PostgreSQL 进行 PostgreSQL 数据库操作时,处理地理空间数据是一个常见需求。本文将详细介绍如何正确配置和使用 NetTopologySuite 来处理地理空间数据类型。
问题背景
开发者在尝试向 PostgreSQL 数据库写入包含地理空间数据(Point 类型)的实体时,遇到了"Writing values of 'NetTopologySuite.Geometries.Point' is not supported"的错误。这通常是由于缺少必要的配置导致的。
解决方案
要解决这个问题,需要在两个层面进行正确配置:
1. 项目依赖配置
首先确保项目中已添加必要的 NuGet 包引用:
<PackageReference Include="NetTopologySuite" Version="2.5.0" />
<PackageReference Include="Npgsql.EntityFrameworkCore.PostgreSQL" Version="8.0.2" />
<PackageReference Include="Npgsql.EntityFrameworkCore.PostgreSQL.NetTopologySuite" Version="8.0.2" />
这三个包分别提供:
- NetTopologySuite:核心地理空间数据处理功能
- Npgsql.EntityFrameworkCore.PostgreSQL:EF Core 的 PostgreSQL 提供程序
- Npgsql.EntityFrameworkCore.PostgreSQL.NetTopologySuite:两者间的集成
2. 数据源配置
关键步骤是在配置 DbDataSource 时显式启用 NetTopologySuite 支持:
var dataSourceBuilder = new NpgsqlDataSourceBuilder(connectionString);
dataSourceBuilder.UseNetTopologySuite(); // 这一行是关键
var dataSource = dataSourceBuilder.Build();
这一步告诉 Npgsql 如何处理 NetTopologySuite 的地理空间类型与 PostgreSQL 地理空间类型之间的转换。
深入理解
为什么需要显式配置?
PostgreSQL 支持多种地理空间数据类型,而 .NET 本身没有内置对这些类型的原生支持。NetTopologySuite 提供了 .NET 端的实现,但需要显式配置来建立两者之间的映射关系。
地理空间数据类型
配置完成后,你可以在实体类中使用 NetTopologySuite 提供的类型,如:
public class FoodLocalization
{
public Point Location { get; set; } // 使用 NetTopologySuite.Geometries.Point
// 其他属性...
}
对应的 PostgreSQL 列可以是 geometry 或 geography 类型。
最佳实践
- 统一版本:确保所有相关包(Npgsql、EF Core、NetTopologySuite)的版本兼容
- 明确SRID:创建 Point 时指定坐标系(SRID),如:
new Point(x, y) { SRID = 4326 }; // WGS84坐标系 - 性能考虑:为地理空间列创建适当的空间索引以提高查询性能
总结
通过正确配置 DbDataSource 并添加必要的 NuGet 包引用,可以顺利地在 Npgsql.EntityFrameworkCore.PostgreSQL 中使用 NetTopologySuite 处理地理空间数据。这一集成使得在 .NET 应用中处理 PostgreSQL 的地理空间功能变得简单高效。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00