Pangolin项目中的Bad Gateway问题排查与解决
问题背景
在使用Pangolin项目搭建内网穿透服务时,用户遇到了Bad Gateway错误。具体场景是将Homelab作为站点接入Pangolin,并在其中部署了Newt作为Docker容器,试图通过该服务访问Jellyfin媒体服务器。
错误现象
当尝试建立连接时,Newt容器日志显示以下关键错误信息:
Error connecting to target: dial tcp 192.168.178.93:8086: connect: connection refused
尽管在本地网络中可以通过192.168.178.93:8086成功访问Jellyfin服务,但通过Pangolin-Newt组合访问时却出现连接拒绝的错误。
排查过程
-
初步检查:确认本地网络环境中Jellyfin服务确实运行在192.168.178.93:8086地址,且可正常访问。
-
网络模式调整:尝试将Newt容器改为使用host网络模式,理论上可以消除Docker网络隔离带来的影响,但问题依旧存在。
-
端口验证:通过curl命令测试Jellyfin服务的连通性,发现一个关键细节差异:
- 成功连接使用的是8096端口(Jellyfin默认端口)
- 失败连接配置的是8086端口
问题根源
经过仔细比对,发现问题源于配置中的端口号不一致:
- 在Pangolin Dashboard中配置的目标端口为8086
- 实际Jellyfin服务运行在默认的8096端口
这种端口不匹配导致Newt代理尝试连接错误的端口,自然会被目标服务拒绝。
解决方案
将Pangolin Dashboard中的目标端口配置从8086修正为8096,与Jellyfin实际服务端口保持一致。修改后,通过Pangolin-Newt组合访问Jellyfin服务恢复正常。
经验总结
-
端口一致性检查:在配置网络服务时,务必确保源配置与目标服务的实际端口完全一致。即使是相近的端口号(如8086和8096)也会导致连接失败。
-
日志分析技巧:当出现"connection refused"错误时,首先应该检查:
- 目标服务是否正常运行
- 网络路径是否通畅
- 端口配置是否正确
-
测试方法:在配置复杂网络服务时,建议先使用简单工具(如curl、telnet等)直接测试目标服务的连通性,排除基础网络问题后再排查上层应用问题。
通过这次问题排查,我们再次验证了网络服务配置中"细节决定成败"的道理。特别是在涉及多层网络转发的场景下,每一层的配置都必须精确匹配,才能确保服务的正常访问。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00