Redisson在SLB环境下的NAT映射问题解决方案
2025-05-09 07:58:36作者:尤峻淳Whitney
背景介绍
在企业级Redis部署架构中,通常会使用服务器负载均衡(SLB)来实现高可用和流量分发。Redisson作为Java的Redis客户端,在与这种特殊网络架构交互时可能会遇到地址映射问题。本文将以一个典型生产案例为例,深入分析问题本质并提供解决方案。
问题现象
在通过SLB连接Redis哨兵集群的环境中,出现了IP地址反复切换的现象。具体表现为:
- 服务通过域名连接SLB(如domainA:2700)
- SLB将请求转发到EIP(如10.75.10.20:27000)
- 最终到达实际的Redis哨兵节点(如10.65.10.30:27000)
Redisson的两种检查机制会交替添加和移除不同IP:
scheduleSentinelDNSCheck会添加SLB的EIPscheduleChangeCheck会添加实际Redis节点IP 导致连接池中地址不断变化,产生"down added"的日志循环
技术原理分析
Redisson的哨兵模式实现包含两个关键检查:
- DNS检查:定期解析配置的哨兵地址
- 变更检查:从已知哨兵获取其他哨兵节点信息
在SLB环境下,这两种机制会获取到不同层级的地址:
- DNS检查获取的是SLB的虚拟IP
- 变更检查获取的是实际Redis节点的物理IP
当两种地址同时存在时,Redisson会认为这是不同的哨兵节点,导致连接池不断重建。
解决方案
方案一:使用NatMapper接口
Redisson提供了NatMapper接口来解决网络地址转换问题。我们可以实现自定义映射逻辑:
config.setNatMapper(new NatMapper() {
@Override
public RedisURI map(RedisURI uri) {
// 将SLB的EIP映射为实际Redis节点IP
if (uri.getHost().equals("10.75.10.20")) {
return new RedisURI(uri.getScheme(), "10.65.10.30", uri.getPort());
}
return uri;
}
});
方案二:使用内置HostNatMapper
Redisson还提供了更简便的HostNatMapper实现:
Map<String, String> hostMap = new HashMap<>();
hostMap.put("10.75.10.20", "10.65.10.30");
config.setNatMapper(new HostNatMapper(hostMap));
最佳实践建议
- 网络规划:尽量保持哨兵配置与实际网络拓扑一致
- 日志监控:设置
org.redisson日志级别为TRACE以便调试 - 版本选择:确保使用较新的Redisson版本(3.11.5及以上)
- 连接池配置:适当调整连接池参数以适应地址映射带来的延迟
总结
在复杂的网络环境中使用Redisson时,理解其地址发现机制至关重要。通过合理配置NatMapper,可以有效解决SLB环境下的地址映射问题,确保Redis连接稳定可靠。本文提供的解决方案已在生产环境验证,可作为类似场景的参考方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19